Matheson Granville J, Ogden R Todd
Department of Psychiatry, Columbia University, New York, NY, 10032, USA.
Department of Biostatistics, Columbia University Mailman School of Public Health, New York, NY, 10032, USA.
EJNMMI Phys. 2023 Mar 13;10(1):17. doi: 10.1186/s40658-023-00537-8.
In positron emission tomography quantification, multiple pharmacokinetic parameters are typically estimated from each time activity curve. Conventionally all but the parameter of interest are discarded before performing subsequent statistical analysis. However, we assert that these discarded parameters also contain relevant information which can be exploited to improve the precision and power of statistical analyses on the parameter of interest. Properly taking this into account can thereby draw more informative conclusions without collecting more data.
By applying a hierarchical multifactor multivariate Bayesian approach, all estimated parameters from all regions can be analysed at once. We refer to this method as Parameters undergoing Multivariate Bayesian Analysis (PuMBA). We simulated patient-control studies with different radioligands, varying sample sizes and measurement error to explore its performance, comparing the precision, statistical power, false positive rate and bias of estimated group differences relative to univariate analysis methods.
We show that PuMBA improves the statistical power for all examined applications relative to univariate methods without increasing the false positive rate. PuMBA improves the precision of effect size estimation, and reduces the variation of these estimates between simulated samples. Furthermore, we show that PuMBA yields performance improvements even in the presence of substantial measurement error. Remarkably, owing to its ability to leverage information shared between pharmacokinetic parameters, PuMBA even shows greater power than conventional univariate analysis of the true binding values from which the parameters were simulated. Across all applications, PuMBA exhibited a small degree of bias in the estimated outcomes; however, this was small relative to the variation in estimated outcomes between simulated datasets.
PuMBA improves the precision and power of statistical analysis of PET data without requiring the collection of additional measurements. This makes it possible to study new research questions in both new and previously collected data. PuMBA therefore holds great promise for the field of PET imaging.
在正电子发射断层扫描定量分析中,通常从每条时间-活度曲线估计多个药代动力学参数。传统上,在进行后续统计分析之前,除了感兴趣的参数外,所有其他参数都会被舍弃。然而,我们认为这些被舍弃的参数也包含相关信息,可用于提高对感兴趣参数进行统计分析的精度和效能。适当地考虑这一点可以在不收集更多数据的情况下得出更具信息量的结论。
通过应用分层多因素多变量贝叶斯方法,可以一次性分析所有区域的所有估计参数。我们将此方法称为多变量贝叶斯分析参数法(PuMBA)。我们模拟了不同放射性配体、不同样本量和测量误差的患者-对照研究,以探索其性能,比较估计组间差异相对于单变量分析方法的精度、统计效能、假阳性率和偏差。
我们表明,相对于单变量方法,PuMBA提高了所有检验应用的统计效能,且不增加假阳性率。PuMBA提高了效应大小估计的精度,并减少了模拟样本之间这些估计值的变化。此外,我们表明,即使存在大量测量误差,PuMBA的性能也会有所改善。值得注意的是,由于其能够利用药代动力学参数之间共享的信息,PuMBA甚至比从模拟参数的真实结合值进行的传统单变量分析显示出更大的效能。在所有应用中,PuMBA在估计结果中表现出较小程度的偏差;然而,相对于模拟数据集之间估计结果的变化而言,这一偏差较小。
PuMBA提高了PET数据统计分析的精度和效能,而无需收集额外的测量数据。这使得在新数据和先前收集的数据中研究新的研究问题成为可能。因此,PuMBA在PET成像领域具有很大的前景。