Yadav Nand Kishor, Saraswat Mukesh
Jaypee Institute of Information Technology Noida, Uttar Pradesh, India.
MethodsX. 2024 May 20;12:102770. doi: 10.1016/j.mex.2024.102770. eCollection 2024 Jun.
In the common classification practices, feature selection is an important aspect that highly impacts the computation efficacy of the model, while implementing complex computer vision tasks. The metaheuristic optimization algorithms gain popularity to obtain optimal feature subset. However, the feature selection using metaheuristics suffers from two common stability problems, namely premature convergence and slow convergence rate. Therefore, to handle the stability problems, this paper presents a fused dataset transformation approach by joining weighted Principal Component Analysis and Fast Independent Component Analysis Techniques. The presented method solves the stability issues by first transforming the original dataset, thereafter newly proposed variant of Henry Gas Solubility Optimization is employed for obtaining a new feature's subset. The proposed method has been compared with other metaheuristic approaches across seven benchmark datasets and observed that it selects better features set which improves the accuracy and computational complexity of the model.
在常见的分类实践中,在执行复杂的计算机视觉任务时,特征选择是一个对模型的计算效率有重大影响的重要方面。元启发式优化算法因能获得最优特征子集而受到欢迎。然而,使用元启发式方法进行特征选择存在两个常见的稳定性问题,即早熟收敛和收敛速度慢。因此,为了解决稳定性问题,本文提出了一种融合数据集变换方法,该方法结合了加权主成分分析和快速独立成分分析技术。所提出的方法通过首先变换原始数据集来解决稳定性问题,此后采用新提出的亨利气体溶解度优化变体来获得新的特征子集。所提出的方法已与其他元启发式方法在七个基准数据集上进行了比较,结果表明它能选择更好的特征集,从而提高模型的准确性和计算复杂度。