Suppr超能文献

基于集成非线性布拉格光栅从连续波光产生皮秒脉冲。

Picosecond pulse generation from continuous-wave light in an integrated nonlinear Bragg grating.

作者信息

Choi Ju Won, Sohn Byoung-Uk, Sahin Ezgi, Chen George F R, Ng Doris K T, Eggleton Benjamin J, Martijn de Sterke Carel, Tan Dawn T H

机构信息

Photonics Devices and System Group, Singapore University of Technology and Design, 8 Somapah Rd, Singapore 487372, Singapore.

Institute of Microelectronics, A*STAR, 2 Fusionopolis Way, #08-02, Innovis Tower, Singapore 138634, Singapore.

出版信息

Nanophotonics. 2022 Mar 18;11(10):2319-2328. doi: 10.1515/nanoph-2022-0026. eCollection 2022 May.

Abstract

The generation of optical pulse trains from continuous-wave light has attracted growing attention in recent years because it provides a simple way to obtain high repetition rate ultrashort pulses. While pulse generation has been extensively demonstrated in optical fibers, pulse train generation from weak, continuous wave light in photonic chips has posed significant challenges because of the short interaction length and therefore difficulty in acquiring sufficient new frequency content, and/or absence of the appropriate dispersion environment. In this manuscript, we report the pulse train generation of a low continuous-wave signal to 18 ps, by leveraging cross-phase modulation induced by co-propagating pump pulses with a peak power of 3.7 W in an ultra-silicon-rich nitride grating. The pulse train generation dynamics are documented both experimentally and theoretically to arise from cross-phase modulation-induced generation of new spectral content, and dispersive re-phasing. This is a new approach in which picosecond pulse generation may be achieved from low power, continuous-wave light.

摘要

近年来,从连续波光产生光脉冲序列引起了越来越多的关注,因为它提供了一种获得高重复率超短脉冲的简单方法。虽然在光纤中已经广泛证明了脉冲产生,但由于相互作用长度短,因此难以获得足够的新频率成分,和/或缺乏合适的色散环境,在光子芯片中从弱连续波光产生脉冲序列带来了重大挑战。在本论文中,我们报告了通过在超富硅氮化物光栅中利用峰值功率为3.7W的同向泵浦脉冲诱导的交叉相位调制,将低连续波信号的脉冲序列产生到18皮秒。通过实验和理论记录了脉冲序列产生动力学,其源于交叉相位调制诱导的新光谱成分的产生和色散重新定相。这是一种新方法,通过它可以从低功率连续波光实现皮秒脉冲产生。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2ada/11636417/150aa449158c/j_nanoph-2022-0026_fig_001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验