Zhang Wei, Liu Siqi, Jiang Sijia, Zhang Jiahang, Ma Hongtao, Xu Liang, Yang Mingyu, Ma Ding, Jiao Qingbin, Tan Xin
Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun Institute of Optics, Changchun 130033, China.
University of the Chinese Academy of Sciences, Beijing 100049, China.
Nanophotonics. 2024 Sep 27;13(23):4303-4316. doi: 10.1515/nanoph-2024-0354. eCollection 2024 Nov.
As a noninvasive and label-free optical technique, Raman spectroscopy offers significant advantages in studying the structure and properties of biomacromolecules, as well as real-time changes in cellular molecular structure. However, its practical applications are hindered by weak scattering responses, low signal intensity, and poor spectral uniformity, which affect the subsequent accuracy of spectral analysis. To address these issues, we report a novel surface-enhanced Raman scattering (SERS) substrate based on a pyramidal pitted silicon (PPSi) array structure adhered with Au-shell Ag-core nanospheres (Au@Ag NSs). By preparing a highly uniform PPSi array substrate with controllable size and arrangement, and constructing SERS-active Au@Ag NSs on this substrate, a three-dimensional (3D) composite SERS substrate is realized. The enhancement performance and spectral uniformity of 3D composite SERS substrate were examined using crystal violet (CV) and Rhodamine 6G (R6G) molecules, achieving a minimum detectable concentration of R6G at 10 M and the analytical enhancement factor (AEF) of 4.2 × 10. Moreover, SERS detection of biological samples with varying concentrations of demonstrated excellent biocompatibility of the SERS substrate and enabled quantitative analysis of bacterial concentration ( = 99.7 %). Theoretical simulations using finite-difference time-domain (FDTD) analysis were conducted to examine the electromagnetic field distribution of the three-dimensional SERS composite substrate, confirming its local electric field enhancement effect. These experimental and theoretical results indicate that the Au@Ag NSs/PPSi substrate with a regulable pyramidal pitted array is a promising candidate for sensitive, label-free SERS detection in medical and biotechnological applications.
作为一种非侵入性且无需标记的光学技术,拉曼光谱在研究生物大分子的结构和性质以及细胞分子结构的实时变化方面具有显著优势。然而,其实际应用受到散射响应弱、信号强度低和光谱均匀性差的阻碍,这些因素会影响后续光谱分析的准确性。为了解决这些问题,我们报道了一种基于附着有金壳银核纳米球(Au@Ag NSs)的金字塔形凹坑硅(PPSi)阵列结构的新型表面增强拉曼散射(SERS)基底。通过制备尺寸和排列可控的高度均匀的PPSi阵列基底,并在该基底上构建具有SERS活性的Au@Ag NSs,实现了一种三维(3D)复合SERS基底。使用结晶紫(CV)和罗丹明6G(R6G)分子对3D复合SERS基底的增强性能和光谱均匀性进行了检测,R6G的最低可检测浓度达到10⁻¹⁰ M,分析增强因子(AEF)为4.2×10⁶。此外,对不同浓度的生物样品进行SERS检测,结果表明SERS基底具有优异的生物相容性,并能够对细菌浓度进行定量分析(R² = 99.7%)。利用时域有限差分(FDTD)分析进行了理论模拟,以研究三维SERS复合基底的电磁场分布,证实了其局部电场增强效应。这些实验和理论结果表明,具有可调节金字塔形凹坑阵列的Au@Ag NSs/PPSi基底是医学和生物技术应用中用于灵敏、无标记SERS检测的有前途的候选材料。