Suppr超能文献

表面增强拉曼光谱法用于鉴定食品加工细菌。

Surface-enhanced Raman spectroscopy for identification of food processing bacteria.

机构信息

Department of Chemistry, University of Agriculture, Faisalabad, Pakistan.

Department of Chemistry, University of Agriculture, Faisalabad, Pakistan.

出版信息

Spectrochim Acta A Mol Biomol Spectrosc. 2021 Nov 15;261:119989. doi: 10.1016/j.saa.2021.119989. Epub 2021 May 23.

Abstract

Food processing bacteria play important role in providing flavors, ingredients and other beneficial characteristics to the food but at the same time some bacteria are responsible for food spoilage. Therefore, quick and reliable identification of these food processing bacteria is very necessary for the differentiation between different species which may help in the development of more useful food processing methodologies. In this study, analysis of different bacterial species (Lactobacillus fermentum, Fructobacillus fructosus, Pediococcus pentosaceus and Halalkalicoccus jeotgali) was performed with our in-house developed Ag NPs-based surface-enhanced Raman spectroscopy (SERS) method. The SERS spectral data was analyzed by multivariate data analysis techniques including principal component analysis (PCA) and partial least square discriminant analysis (PLS-DA). Bacterial species were differentiated on the basis of SERS spectral features and potential of SERS was compared with the Raman spectroscopy (RS). SERS along with PCA and PLS-DA was found to be an efficient technique for identification and differentiation of food processing bacterial species. Differentiation with accuracy of 99.5% and sensitivity of 99.7% was depicted by PLS-DA model using leave one out cross validation.

摘要

食品加工细菌在为食品提供风味、成分和其他有益特性方面发挥着重要作用,但与此同时,有些细菌也会导致食品变质。因此,快速可靠地识别这些食品加工细菌对于区分不同的物种非常必要,这有助于开发更有用的食品加工方法。在这项研究中,我们使用内部开发的基于银纳米粒子的表面增强拉曼光谱(SERS)方法对不同的细菌物种(发酵乳杆菌、果糖双歧杆菌、戊糖片球菌和海盐单胞菌)进行了分析。通过主成分分析(PCA)和偏最小二乘判别分析(PLS-DA)等多元数据分析技术对 SERS 光谱数据进行了分析。基于 SERS 光谱特征对细菌物种进行了区分,并比较了 SERS 的潜力与拉曼光谱(RS)。结果表明,SERS 结合 PCA 和 PLS-DA 是一种用于鉴定和区分食品加工细菌物种的有效技术。通过留一法交叉验证,PLS-DA 模型的区分准确率为 99.5%,灵敏度为 99.7%。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验