Suppr超能文献

黎曼流形上的分数阶索伯列夫空间。

Fractional Sobolev spaces on Riemannian manifolds.

作者信息

Caselli Michele, Florit-Simon Enric, Serra Joaquim

机构信息

Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy.

Department of Mathematics, ETH Zürich, Rämistrasse 101, 8092 Zürich, Switzerland.

出版信息

Math Ann. 2024;390(4):6249-6314. doi: 10.1007/s00208-024-02894-w. Epub 2024 Jun 3.

Abstract

This article studies the canonical Hilbert energy on a Riemannian manifold for , with particular focus on the case of closed manifolds. Several equivalent definitions for this energy and the fractional Laplacian on a manifold are given, and they are shown to be identical up to explicit multiplicative constants. Moreover, the precise behavior of the kernel associated with the singular integral definition of the fractional Laplacian is obtained through an in-depth study of the heat kernel on a Riemannian manifold. Furthermore, a monotonicity formula for stationary points of functionals of the type , with , is given, which includes in particular the case of nonlocal -minimal surfaces. Finally, we prove some estimates for the Caffarelli-Silvestre extension problem, which are of general interest. This work is motivated by Caselli et al. (Yau's conjecture for nonlocal minimal surfaces, arxiv preprint, 2023), which defines nonlocal minimal surfaces on closed Riemannian manifolds and shows the existence of infinitely many of them for any metric on the manifold, ultimately proving the nonlocal version of a conjecture of Yau (Ann Math Stud 102:669-706, 1982). Indeed, the definitions and results in the present work serve as an essential technical toolbox for the results in Caselli et al. (Yau's conjecture for nonlocal minimal surfaces, arxiv preprint, 2023).

摘要

本文研究了黎曼流形上(\alpha\in(0,2))时的典范希尔伯特能量,特别关注闭流形的情况。给出了该能量以及流形上分数阶拉普拉斯算子的几个等价定义,并证明它们在明确的乘法常数范围内是相同的。此外,通过对黎曼流形上热核的深入研究,得到了与分数阶拉普拉斯算子的奇异积分定义相关的核的精确行为。此外,给出了(F(u)=\int_{\Omega}f(|Du|)dx)(其中(f)满足一定条件)这类泛函驻点的一个单调性公式,特别包括非局部(\alpha -)极小曲面的情况。最后,我们证明了一些关于卡法雷利 - 西尔维斯特扩展问题的估计,这些估计具有普遍意义。这项工作的动机来自卡塞利等人(《非局部极小曲面的丘成桐猜想》,arxiv预印本,2023年),他们在闭黎曼流形上定义了非局部极小曲面,并证明对于流形上的任何度量都存在无穷多个这样的曲面,最终证明了丘成桐一个猜想(《数学年刊研究》102:669 - 706,1982年)的非局部版本。事实上,本工作中的定义和结果是卡塞利等人(《非局部极小曲面的丘成桐猜想》,arxiv预印本,2023年)结果的重要技术工具箱。

相似文献

1
Fractional Sobolev spaces on Riemannian manifolds.黎曼流形上的分数阶索伯列夫空间。
Math Ann. 2024;390(4):6249-6314. doi: 10.1007/s00208-024-02894-w. Epub 2024 Jun 3.
2
Kernel Methods on Riemannian Manifolds with Gaussian RBF Kernels.基于高斯 RBF 核的黎曼流形上的核方法。
IEEE Trans Pattern Anal Mach Intell. 2015 Dec;37(12):2464-77. doi: 10.1109/TPAMI.2015.2414422.
3
Heterogeneous Riemannian Few-Shot Learning Network.异构黎曼少样本学习网络
IEEE Trans Neural Netw Learn Syst. 2025 Sep;36(9):16507-16520. doi: 10.1109/TNNLS.2025.3561930.
6
Sobolev-to-Lipschitz property on -spaces and applications.关于 - 空间的索伯列夫到利普希茨性质及应用
Math Ann. 2022;384(3-4):1815-1832. doi: 10.1007/s00208-021-02331-2. Epub 2021 Dec 23.
9
Geometric properties of almost pure metric plastic pseudo-Riemannian manifolds.几乎纯度量塑性伪黎曼流形的几何性质。
Heliyon. 2024 Nov 22;10(23):e40593. doi: 10.1016/j.heliyon.2024.e40593. eCollection 2024 Dec 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验