Caselli Michele, Florit-Simon Enric, Serra Joaquim
Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy.
Department of Mathematics, ETH Zürich, Rämistrasse 101, 8092 Zürich, Switzerland.
Math Ann. 2024;390(4):6249-6314. doi: 10.1007/s00208-024-02894-w. Epub 2024 Jun 3.
This article studies the canonical Hilbert energy on a Riemannian manifold for , with particular focus on the case of closed manifolds. Several equivalent definitions for this energy and the fractional Laplacian on a manifold are given, and they are shown to be identical up to explicit multiplicative constants. Moreover, the precise behavior of the kernel associated with the singular integral definition of the fractional Laplacian is obtained through an in-depth study of the heat kernel on a Riemannian manifold. Furthermore, a monotonicity formula for stationary points of functionals of the type , with , is given, which includes in particular the case of nonlocal -minimal surfaces. Finally, we prove some estimates for the Caffarelli-Silvestre extension problem, which are of general interest. This work is motivated by Caselli et al. (Yau's conjecture for nonlocal minimal surfaces, arxiv preprint, 2023), which defines nonlocal minimal surfaces on closed Riemannian manifolds and shows the existence of infinitely many of them for any metric on the manifold, ultimately proving the nonlocal version of a conjecture of Yau (Ann Math Stud 102:669-706, 1982). Indeed, the definitions and results in the present work serve as an essential technical toolbox for the results in Caselli et al. (Yau's conjecture for nonlocal minimal surfaces, arxiv preprint, 2023).
本文研究了黎曼流形上(\alpha\in(0,2))时的典范希尔伯特能量,特别关注闭流形的情况。给出了该能量以及流形上分数阶拉普拉斯算子的几个等价定义,并证明它们在明确的乘法常数范围内是相同的。此外,通过对黎曼流形上热核的深入研究,得到了与分数阶拉普拉斯算子的奇异积分定义相关的核的精确行为。此外,给出了(F(u)=\int_{\Omega}f(|Du|)dx)(其中(f)满足一定条件)这类泛函驻点的一个单调性公式,特别包括非局部(\alpha -)极小曲面的情况。最后,我们证明了一些关于卡法雷利 - 西尔维斯特扩展问题的估计,这些估计具有普遍意义。这项工作的动机来自卡塞利等人(《非局部极小曲面的丘成桐猜想》,arxiv预印本,2023年),他们在闭黎曼流形上定义了非局部极小曲面,并证明对于流形上的任何度量都存在无穷多个这样的曲面,最终证明了丘成桐一个猜想(《数学年刊研究》102:669 - 706,1982年)的非局部版本。事实上,本工作中的定义和结果是卡塞利等人(《非局部极小曲面的丘成桐猜想》,arxiv预印本,2023年)结果的重要技术工具箱。