Kotha Swapnil Saha, Akter Nipa, Abhi Sarafat Hussain, Das Sajal Kumar, Islam Md Robiul, Ali Md Firoj, Ahamed Md Hafiz, Islam Md Manirul, Sarker Subrata Kumar, Badal Md Faisal Rahman, Das Prangon, Tasneem Zinat, Hasan Md Mehedi
Department of Mechatronics Engineering, Rajshahi University of Engineering & Technology, Rajshahi 6204, Bangladesh.
Heliyon. 2024 Sep 12;10(18):e37237. doi: 10.1016/j.heliyon.2024.e37237. eCollection 2024 Sep 30.
The next generation of autonomous-legged robots will herald a new era in the fields of manufacturing, healthcare, terrain exploration, and surveillance. We can expect significant progress in a number of industries, including inspection, search and rescue, elderly care, workplace safety, and nuclear decommissioning. Advanced legged robots are built with a state-of-the-art architecture that makes use of stereo vision and inertial measurement data to navigate unfamiliar and challenging terrains. However, designing controllers for these robots is a difficult task due to a number of factors, including dynamic terrains, tracking delays, inaccurate 3D maps, unforeseen events, and sensor calibration issues. To address these challenges, this paper discusses the current methods for controlling autonomous-legged robots. Our primary contribution is comparative research on robot control strategies such as virtual model control (VMC), model predictive control (MPC), and model-free reinforcement learning (RL). This paper provides information on different strategies for controlling autonomous legged robots and discusses the potential advancements and applications of this technology in the future. The aim of this study is to assist future researchers in making informed decisions on the selection of optimal control strategies and innovative concepts when developing and working with legged robots.
下一代自主腿部机器人将开创制造、医疗保健、地形探测和监视领域的新纪元。我们可以期待在包括检查、搜索与救援、老年护理、工作场所安全和核退役等多个行业取得重大进展。先进的腿部机器人采用了利用立体视觉和惯性测量数据在陌生且具有挑战性的地形中导航的最先进架构。然而,由于诸多因素,包括动态地形、跟踪延迟、不准确的三维地图、不可预见的事件以及传感器校准问题,为这些机器人设计控制器是一项艰巨的任务。为应对这些挑战,本文讨论了当前控制自主腿部机器人的方法。我们的主要贡献是对虚拟模型控制(VMC)、模型预测控制(MPC)和无模型强化学习(RL)等机器人控制策略进行比较研究。本文提供了有关控制自主腿部机器人的不同策略的信息,并讨论了该技术未来可能的进展和应用。本研究的目的是帮助未来的研究人员在开发和使用腿部机器人时,在选择最优控制策略和创新概念方面做出明智的决策。