Shi Hao, Sun Yuanhe, Liang Zhaofeng, Cao Shuqi, Zhang Lei, Zhu Daming, Wu Yanqing, Yao Zeying, Chen Wenqing, Li Zhenjiang, Yang Shumin, Zhao Jun, Wang Chunpeng, Tai Renzhong
Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China.
Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China.
Nanophotonics. 2023 Sep 25;12(19):3793-3805. doi: 10.1515/nanoph-2023-0402. eCollection 2023 Sep.
Scintillation-based X-ray imaging can provide convenient visual observation of absorption contrast by standard digital cameras, which is critical in a variety of science and engineering disciplines. More efficient scintillators and electronic postprocessing derived from neural networks are usually used to improve the quality of obtained images from the perspective of optical imaging and machine vision, respectively. Here, we propose to overcome the intrinsic separation of optical transmission process and electronic calculation process, integrating the imaging and postprocessing into one fused optical-electronic convolutional autoencoder network by affixing a designable optical convolutional metasurface to the scintillator. In this way, the convolutional autoencoder was directly connected to down-conversion process, and the optical information loss and training cost can be decreased simultaneously. We demonstrate that feature-specific enhancement of incoherent images is realized, which can apply to multi-class samples without additional data precollection. Hard X-ray experimental validations reveal the enhancement of textural features and regional features achieved by adjusting the optical metasurface, indicating a signal-to-noise ratio improvement of up to 11.2 dB. We anticipate that our framework will advance the fundamental understanding of X-ray imaging and prove to be useful for number recognition and bioimaging applications.
基于闪烁的X射线成像可以通过标准数码相机提供对吸收对比度的便捷视觉观察,这在各种科学和工程学科中至关重要。通常分别从光学成像和机器视觉的角度使用更高效的闪烁体和源自神经网络的电子后处理来提高所获图像的质量。在此,我们提议克服光传输过程和电子计算过程的固有分离,通过在闪烁体上附加一个可设计的光学卷积超表面,将成像和后处理集成到一个融合的光电卷积自动编码器网络中。通过这种方式,卷积自动编码器直接与下转换过程相连,并且可以同时降低光学信息损失和训练成本。我们证明实现了非相干图像的特征特异性增强,其可应用于多类样本而无需额外的数据预采集。硬X射线实验验证揭示了通过调整光学超表面实现的纹理特征和区域特征的增强,表明信噪比提高了高达11.2 dB。我们预计我们的框架将推进对X射线成像的基本理解,并证明对数字识别和生物成像应用有用。