Suppr超能文献

基于CT图像的虚拟肺不张模拟模型及无创肺结节定位系统的开发。

Development of a CT image-based virtual atelectasis simulation model and noninvasive lung nodule localization system.

作者信息

Hwang Intae, Ham Sungwon, Kim Chohee, Lee Seong-Hak, Kim Cherry, Hwang Jinwook

机构信息

Healthcare Readiness Institute for Unified Korea, Korea University College of Medicine, Seoul, Republic of Korea.

Department of Radiology, Ansan Hospital, Korea University College of Medicine, Ansan-si, Republic of Korea.

出版信息

J Thorac Dis. 2024 Nov 30;16(11):7651-7662. doi: 10.21037/jtd-24-903. Epub 2024 Nov 21.

Abstract

BACKGROUND

In the process of video-assisted thoracoscopic surgery (VATS) for lung nodule resection, lung is leaded to atelectasis. However, preoperative computed tomography (CT) images are taken during inspiration, which means they differ significantly from the lung status observed during surgery. Consequently, this discrepancy can make the localization of small or subsolid nodules challenging during the operation. This study aimed to develop a CT-based virtual atelectasis simulation system for noninvasive lung nodule localization. By accurately simulating atelectasis, this study aimed to improve the precision of presurgical planning from lung nodule resections.

METHODS

This study retrospectively examined 20 patients who had either subsolid nodules or small nodules less than 3 cm in size, selected from a cohort of 279 patients who underwent VATS surgery for lung nodules in Korea University Ansan Hospital between June 28, 2021, and January 22, 2024. Chest CT images of the lungs of 20 patients were acquired, and image data were converted three-dimensional models. The mesh points extracted from these lung models were manipulated to simulate the effects of gravity, by adjusting the lung shapes and nodule locations to align with the respective surgical postures of the patients. Subsequently, we assessed the similarity of the simulation by comparing the resulting deformed lung shapes and nodule locations with the corresponding perspectives observed in the surgical videos.

RESULTS

The average volume of the entire lung among the patients was 2,336 cm (±588). After atelectasis simulation, the average lung shrinkage rate was 48.6% (±12.9%). Evaluations of an average of 15 pairs of images per case revealed significant conformity between atelectasis simulation images and surgical video snapshots, with average Dice and Jaccard similarity coefficient values of 90.27 and 88.25, respectively. Furthermore, the alignment of nodule locations between the simulations and surgical anticipation demonstrated notable accuracy, with an average Hausdorff distance of 6.39 mm.

CONCLUSIONS

We successfully developed a simulation of lung atelectasis based on preoperative CT scans that closely resembled actual surgical videos. The integration of this presurgical atelectasis simulation is anticipated to enhance the accuracy of nodule locations, thus contributing to more efficient and precise surgical planning.

摘要

背景

在电视辅助胸腔镜手术(VATS)切除肺结节的过程中,肺会出现肺不张。然而,术前计算机断层扫描(CT)图像是在吸气时拍摄的,这意味着它们与手术中观察到的肺状态有显著差异。因此,这种差异会使手术中对小的或亚实性结节的定位具有挑战性。本研究旨在开发一种基于CT的虚拟肺不张模拟系统,用于无创性肺结节定位。通过准确模拟肺不张,本研究旨在提高肺结节切除术前手术规划的精度。

方法

本研究回顾性检查了20例患者,这些患者要么有亚实性结节,要么有直径小于3 cm的小结节,选自2021年6月28日至2024年1月22日在韩国大学安山医院接受VATS肺结节手术的279例患者队列。获取了20例患者肺部的胸部CT图像,并将图像数据转换为三维模型。通过调整肺的形状和结节位置以使其与患者各自的手术姿势对齐,对从这些肺模型中提取的网格点进行操作,以模拟重力的影响。随后,我们通过将产生的变形肺形状和结节位置与手术视频中观察到的相应视角进行比较,评估了模拟的相似性。

结果

患者全肺的平均体积为2336 cm³(±588)。肺不张模拟后,平均肺萎缩率为48.6%(±12.9%)。每例平均对15对图像进行评估,结果显示肺不张模拟图像与手术视频快照之间具有显著的一致性,平均Dice相似系数和Jaccard相似系数分别为90.27和88.25。此外,模拟与手术预期之间结节位置的对齐显示出显著的准确性,平均豪斯多夫距离为6.39 mm。

结论

我们成功开发了一种基于术前CT扫描的肺不张模拟,其与实际手术视频非常相似。预计这种术前肺不张模拟的整合将提高结节定位的准确性,从而有助于更高效、精确的手术规划。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8088/11635236/72ce90988856/jtd-16-11-7651-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验