Suppr超能文献

超表面吸收体增强热电转换。

Metasurface absorber enhanced thermoelectric conversion.

作者信息

Nakayama Ryosuke, Saito Sohei, Tanaka Takuo, Kubo Wakana

机构信息

Tokyo University of Agriculture and Technology Faculty of Engineering, Koganei, Tokyo, Japan.

RIKEN Center for Advanced Photonics Innovative Photon Manipulation Research Team, Wako, Saitama, Japan.

出版信息

Nanophotonics. 2024 Feb 9;13(8):1361-1368. doi: 10.1515/nanoph-2023-0653. eCollection 2024 Apr.

Abstract

Metasurfaces are artificial thin materials that achieve optical thickness through thin geometrical structure. This feature of metasurfaces results in unprecedented benefits for enhancing the performance of optoelectronic devices. In this study, we report that this metasurface feature is also essential to drive photo-thermoelectric conversion, which requires the accumulation of thermal energy and effective heat conduction. For example, a metasurface-attached thermoelectric device placed in an environment with uniform thermal radiation generates an output voltage by gathering the thermal energies existing in the environment and creating an additional thermal gradient across the thermoelectric element. In contrast, when a 100-μm-thick-carbon-black-coated electrode was used instead of the metasurface, the device showed lower thermoelectric performance than that of the metasurface-attached device although carbon black exhibits higher infrared absorption than the metasurface. These results indicate that metasurface characteristics of optical thickness and thin geometrical structure for achieving the high thermal conductance are essential in enhancing the performance of photo-thermoelectric devices in terms of the effective collection of thermal energies and conduction of local heating.

摘要

超表面是一种人造薄材料,通过薄几何结构实现光学厚度。超表面的这一特性为提高光电器件的性能带来了前所未有的好处。在本研究中,我们报告了这种超表面特性对于驱动光热发电转换也是至关重要的,而光热发电转换需要热能的积累和有效的热传导。例如,放置在具有均匀热辐射环境中的附着超表面的热电器件,通过收集环境中存在的热能并在热电元件上产生额外的热梯度来产生输出电压。相比之下,当使用100μm厚的涂有炭黑的电极代替超表面时,尽管炭黑比超表面表现出更高的红外吸收,但该器件的热电性能低于附着超表面的器件。这些结果表明,在有效收集热能和传导局部加热方面,用于实现高导热率的光学厚度和薄几何结构的超表面特性对于提高光热发电器件的性能至关重要。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3fcd/11636509/a902e55b9da2/j_nanoph-2023-0653_fig_001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验