Suppr超能文献

使用深度强化学习优化双曲线超材料的算法比较。

Comparison of algorithms using deep reinforcement learning for optimization of hyperbolic metamaterials.

作者信息

Hamada Kenta, Hsiao Hui-Hsin, Kubo Wakana

机构信息

Division of Advanced Electrical and Electronics Engineering, Tokyo University of Agriculture and Technology, 2- 24-16 Naka-cho, Koganei-shi, Tokyo, 184-8588, Japan.

Department of Engineering Science and Ocean Engineering, National Taiwan University, Taipei, 10617, Taiwan.

出版信息

Sci Rep. 2024 Dec 30;14(1):31842. doi: 10.1038/s41598-024-83167-z.

Abstract

A hyperbolic metamaterial absorber has great potential for improving the performance of photo-thermoelectric devices targeting heat sources owing to its broadband absorption. However, optimizing its geometry requires considering numerous parameters to achieve absorption that aligns with the radiation spectrum. Here, we compare three algorithms using deep reinforcement learning for the optimization of a hyperbolic metamaterial absorber. By analyzing the absorption spectra obtained from the three algorithms with limited number of datasets, we assessed the prediction accuracy of each algorithm. Our findings indicate that relying on a single algorithm for optimization, particularly with a small number of datasets, can lead to misestimations in structural optimization. This underscores the importance of using multiple algorithms to ensure accurate and reliable optimization results. Finally, by utilizing the optimal algorithm, we achieved to increase the power generation of the metamaterial thermoelectric conversion by five times.

摘要

由于其宽带吸收特性,双曲线超材料吸收器在改善针对热源的光热电器件性能方面具有巨大潜力。然而,优化其几何结构需要考虑众多参数,以实现与辐射光谱相匹配的吸收。在此,我们比较了三种使用深度强化学习的算法来优化双曲线超材料吸收器。通过分析从有限数量数据集的三种算法获得的吸收光谱,我们评估了每种算法的预测准确性。我们的研究结果表明,仅依靠单一算法进行优化,尤其是在数据集数量较少的情况下,可能会导致结构优化中的错误估计。这凸显了使用多种算法以确保准确可靠的优化结果的重要性。最后,通过使用最优算法,我们实现了将超材料热电转换的发电量提高五倍。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验