ICFO - Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Castelldefels (Barcelona), Spain.
Nanophotonic Systems Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, Zurich, Switzerland.
Nat Commun. 2021 Mar 31;12(1):2001. doi: 10.1038/s41467-021-22280-3.
Using light to manipulate fluids has been a long-sought-after goal for lab-on-a-chip applications to address the size mismatch between bulky external fluid controllers and microfluidic devices. Yet, this goal has remained elusive due to the complexity of thermally driven fluid dynamic phenomena, and the lack of approaches that allow comprehensive multiscale and multiparameter studies. Here, we report an innovative optofluidic platform that fulfills this need by combining digital holographic microscopy with state-of-the-art thermoplasmonics, allowing us to identify the different contributions from thermophoresis, thermo-osmosis, convection, and radiation pressure. In our experiments, we demonstrate that a local thermal perturbation at the microscale can lead to mm-scale changes in both the particle and fluid dynamics, thus achieving long-range transport. Furthermore, thanks to a comprehensive parameter study involving sample geometry, temperature increase, light fluence, and size of the heat source, we showcase an integrated and reconfigurable all-optical control strategy for microfluidic devices, thereby opening new frontiers in fluid actuation technology.
用光来操控流体一直是微流控应用中追求的目标,以解决庞大的外部流体控制器与微流控器件之间的尺寸不匹配问题。然而,由于热驱动流体动力学现象的复杂性,以及缺乏允许全面多尺度和多参数研究的方法,这一目标一直难以实现。在这里,我们报告了一个创新的光流控平台,通过将数字全息显微镜与最先进的热等离子体技术相结合,满足了这一需求,使我们能够识别出从热泳、热渗透、对流和辐射压力的不同贡献。在我们的实验中,我们证明了在微尺度上的局部热扰动可以导致颗粒和流体动力学的毫米级变化,从而实现远程传输。此外,由于涉及样品几何形状、温度升高、光通量和热源大小的全面参数研究,我们展示了一种用于微流控器件的集成和可重构的全光控制策略,从而为流体驱动技术开辟了新的前沿。