Masoumi Shadi, Lee Jaeyul, Jones Georgia L, Quémener Mireille, Parent Martin, Bouma Brett E, Hariri Lida P, Côté Daniel C, Villiger Martin
CERVO Brain Research Center, Université Laval, Québec, Québec, Canada.
Centre d'Optique, Photonique et Laser (COPL), Université Laval, Québec, Québec, Canada.
Biomed Opt Express. 2024 Nov 25;15(12):6957-6976. doi: 10.1364/BOE.538560. eCollection 2024 Dec 1.
Imaging depth-resolved birefringence and optic axis orientation with polarization sensitive optical coherence tomography (PS-OCT) unveils details of tissue structure and organization that can be of high pathophysiologic, mechanistic, and diagnostic value. For catheter-based PS-OCT, the dynamic rotation of the fiber optic probe, in addition to the polarization effects of the system components, complicates the reliable and robust reconstruction of the sample's optic axis orientation. Addressing this issue, we present a new method for the reconstruction of absolute depth-resolved optic axis orientation in catheter-based PS-OCT by using the intrinsic retardance of the protecting catheter sheath as a stable guide star signal. Throughout the paper, we rigorously inspect the retardance and optic axis orientation of the sheath and validate our method by imaging a birefringent phantom with known optic axis orientation. Reconstructing the optic axis orientation of the phantom, placed at different locations around the catheter, we measured an average absolute deviation (AAD) for the mean optic axis orientation over cross-sectional images of 3.28°, even with significant bending stress on the catheter. This corresponds to an almost three-fold improvement compared to our earlier method (optic axis AAD of 9.41°). We finally highlight the capability of our reconstruction with stereotactic catheter-based PS-OCT of a fresh sheep brain.
利用偏振敏感光学相干断层扫描(PS-OCT)成像深度分辨双折射和光轴方向,可揭示具有高病理生理学、机制和诊断价值的组织结构细节。对于基于导管的PS-OCT,除了系统组件的偏振效应外,光纤探头的动态旋转使样本光轴方向的可靠且稳健重建变得复杂。为解决此问题,我们提出一种新方法,通过将保护导管鞘的固有延迟作为稳定的引导星信号,在基于导管的PS-OCT中重建绝对深度分辨光轴方向。在整篇论文中,我们严格检查了鞘的延迟和光轴方向,并通过对具有已知光轴方向的双折射体模成像来验证我们的方法。通过重建放置在导管周围不同位置的体模的光轴方向,即使在导管上施加显著弯曲应力的情况下,我们在横截面图像上测量的平均光轴方向的平均绝对偏差(AAD)为3.28°。与我们早期的方法相比(光轴AAD为9.41°),这几乎提高了三倍。我们最终展示了基于立体定向导管的PS-OCT对新鲜绵羊脑进行重建的能力。