Suppr超能文献

低磷酸酯酶症小鼠模型中胶原蛋白的空间偏振二次谐波产生评估

Spatial polarimetric second harmonic generation evaluation of collagen in a hypophosphatasia mouse model.

作者信息

Zheng Tianyi, Pendleton Emily G, Barrow Ruth P, Maslesa Ana D, Kner Peter A, Mortensen Luke J

机构信息

School of Electrical and Computer Engineering, University of Georgia, Athens, GA 30602, USA.

Regenerative Bioscience Center, Rhodes Center for ADS, University of Georgia, Athens, GA 30602, USA.

出版信息

Biomed Opt Express. 2024 Nov 22;15(12):6940-6956. doi: 10.1364/BOE.529428. eCollection 2024 Dec 1.

Abstract

Polarization-resolved second harmonic generation (pSHG) is a label-free method that has been used in a range of tissue types to describe collagen orientation. In this work, we develop pSHG analysis techniques for investigating cranial bone collagen assembly defects occurring in a mouse model of hypophosphatasia (HPP), a metabolic bone disease characterized by a lack of bone mineralization. After observing differences in bone collagen lamellar sheet structures using scanning electron microscopy, we found similar alterations with pSHG between the healthy and HPP mouse collagen lamellar sheet organization. We then developed a spatial polarimetric gray-level co-occurrence matrix (spGLCM) method to explore polarization-mediated textural differences in the bone collagen mesh. We used our spGLCM method to describe the collagen organizational differences between HPP and healthy bone along the polarimetric axis that may be caused by poorly aligned collagen molecules and a reduction in collagen density. Finally, we applied machine learning classifiers to predict bone disease state using pSHG imaging and spGLCM methods. Comparing random forest (RF) and XGBoost technique on spGLCM, we were able to accurately separate unknown images from the two groups with an averaged F1 score of 92.30%±3.11% by using RF. Our strategy could potentially allow for monitoring of therapeutic efficacy and disease progression in HPP, or even be extended to other collagen-related ailments or tissues.

摘要

偏振分辨二次谐波产生(pSHG)是一种无标记方法,已被用于多种组织类型来描述胶原蛋白的取向。在这项工作中,我们开发了pSHG分析技术,以研究低磷血症(HPP)小鼠模型中出现的颅骨胶原组装缺陷,HPP是一种以骨矿化缺乏为特征的代谢性骨病。在使用扫描电子显微镜观察骨胶原层状结构的差异后,我们发现健康小鼠和HPP小鼠胶原层状结构组织之间在pSHG方面有类似的改变。然后,我们开发了一种空间偏振灰度共生矩阵(spGLCM)方法,以探索骨胶原网中偏振介导的纹理差异。我们使用spGLCM方法来描述HPP骨与健康骨在偏振轴上的胶原组织差异,这些差异可能是由胶原分子排列不佳和胶原密度降低引起的。最后,我们应用机器学习分类器,使用pSHG成像和spGLCM方法来预测骨病状态。通过在spGLCM上比较随机森林(RF)和XGBoost技术,我们能够使用RF以92.30%±3.11%的平均F1分数准确地将两组未知图像分开。我们的策略可能允许监测HPP的治疗效果和疾病进展,甚至扩展到其他与胶原相关的疾病或组织。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/27d6/11640570/b5233dbde4cc/boe-15-12-6940-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验