Suppr超能文献

一种用于糖尿病视网膜图像预处理和分类的新型对比度增强技术。

A novel contrast enhancement technique for diabetic retinal image pre-processing and classification.

作者信息

Naz Huma, Ahuja Neelu Jyothi

机构信息

School of Computer Science, UPES, Dehradun, India.

出版信息

Int Ophthalmol. 2024 Dec 16;45(1):11. doi: 10.1007/s10792-024-03377-2.

Abstract

BACKGROUND

Diabetic Retinopathy (DR) is a leading cause of blindness among individuals aged 18 to 65 with diabetes, affecting 35-60% of this population, according to the International Diabetes Federation. Early diagnosis is critical for preventing vision loss, yet processing raw fundus images using machine learning faces significant challenges, particularly in accurately identifying microaneurysm lesions, which are crucial for diagnosis.

METHODS

This study proposes a novel pre-processing technique utilizing the Modified Fuzzy C-means Clustering approach combined with a Support Vector Machine classifier. The method includes converting RGB images to HSI colour space, applying median filtering to reduce noise, enhancing contrast through Intensity Histogram Equalization, and identifying false microaneurysm candidates using connected components. Additionally, morphological operations are performed to remove the optic disc from the enhanced images due to its similarity to microaneurysms.

RESULTS

The proposed method was evaluated using publicly available datasets, demonstrating superior performance compared to existing state-of-the-art algorithms. The approach achieved an accuracy rate of 99.31%, significantly improving the detection of microaneurysms and reducing false detections.

CONCLUSIONS

The findings indicate that the proposed pre-processing technique effectively enhances diabetic retinopathy classification by addressing the challenges of false microaneurysm detection. The comparative analysis against state-of-the-art algorithms highlights the effectiveness of the proposed method, particularly in addressing the challenges associated with false microaneurysms.

摘要

背景

根据国际糖尿病联合会的数据,糖尿病视网膜病变(DR)是18至65岁糖尿病患者失明的主要原因,影响该人群的35%-60%。早期诊断对于预防视力丧失至关重要,然而,使用机器学习处理原始眼底图像面临重大挑战,尤其是在准确识别对诊断至关重要的微动脉瘤病变方面。

方法

本研究提出了一种新颖的预处理技术,该技术利用改进的模糊C均值聚类方法与支持向量机分类器相结合。该方法包括将RGB图像转换为HSI颜色空间,应用中值滤波以减少噪声,通过强度直方图均衡化增强对比度,并使用连通组件识别假微动脉瘤候选物。此外,由于视盘与微动脉瘤相似,因此进行形态学操作以从增强图像中去除视盘。

结果

使用公开可用的数据集对所提出的方法进行了评估,结果表明该方法与现有的最先进算法相比具有卓越的性能。该方法的准确率达到了99.31%,显著提高了微动脉瘤的检测率并减少了误检测。

结论

研究结果表明,所提出的预处理技术通过解决假微动脉瘤检测的挑战,有效地增强了糖尿病视网膜病变的分类。与最先进算法的对比分析突出了所提出方法的有效性,特别是在应对与假微动脉瘤相关的挑战方面。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验