Toyama Taku, Maruko Ichiro, Zhou Han Peng, Ikeda Miki, Hasegawa Taiji, Iida Tomohiro, Aihara Makoto, Ueta Takashi
Department of Ophthalmology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan.
Department of Ophthalmology, Tokyo Women's Medical University, Tokyo, Japan.
PLoS One. 2024 Dec 16;19(12):e0315825. doi: 10.1371/journal.pone.0315825. eCollection 2024.
The objective of this study is to estimate the area of the Foveal Avascular Zone (FAZ) from B-scan OCT images using machine learning algorithms.
We developed machine learning models to predict the FAZ area from OCT B-scan images of eyes without retinal vascular diseases. The study involved three models: Model 1 predicted the FAZ length from B-scan images; Model 2 estimated the FAZ area from the predicted length using 1, 3, or 5 horizontal measurements; and Model 3 converted the FAZ area from pixels to mm2. The models' performance was evaluated using Mean Absolute Error (MAE), Mean Squared Error (MSE), and the Coefficient of Determination (R2). The FAZ area was subsequently estimated by sequentially applying Models 1→2→3 on a new dataset.
Model 1 achieved a MAE of 2.86, MSE of 17.56, and R2 of 0.87. Model 2's performance improved with the number of horizontal measurements, with the best results obtained using 5 lines (MAE: 40.36, MSE: 3129.65, R2: 0.95). Model 3 achieved a MAE of 1.52e-3, MSE of 4.0e-6, and R2 of 1.0. The accuracy of FAZ area estimation increased with the number of B-scan images used, with the correlation coefficient rising from 0.475 (1 line) to 0.596 (5 lines). Bland-Altman analysis showed improved agreement between predicted and actual FAZ areas with increasing B-scan images, evidenced by decreasing biases and narrower limits of agreement.
This study successfully developed machine learning models capable of predicting FAZ area from OCT B-scan images. These findings demonstrate the potential for using OCT images to predict OCTA data, particularly in populations where OCTA imaging is challenging, such as children and the elderly. Future studies could explore the developmental mechanisms of the FAZ and macula, providing new insights into retinal health across different age groups.
本研究的目的是使用机器学习算法从B超光学相干断层扫描(OCT)图像中估计黄斑无血管区(FAZ)的面积。
我们开发了机器学习模型,以从无视网膜血管疾病的眼睛的OCT B超图像预测FAZ面积。该研究涉及三种模型:模型1从B超图像预测FAZ长度;模型2使用1、3或5次水平测量从预测长度估计FAZ面积;模型3将FAZ面积从像素转换为平方毫米。使用平均绝对误差(MAE)、均方误差(MSE)和决定系数(R2)评估模型的性能。随后,通过在新数据集上依次应用模型1→2→3来估计FAZ面积。
模型1的MAE为2.86,MSE为17.56,R2为0.87。模型2的性能随着水平测量次数的增加而提高,使用5条线时获得最佳结果(MAE:40.36,MSE:3129.65,R2:0.95)。模型3的MAE为1.52e-3,MSE为4.0e-6,R2为1.0。FAZ面积估计的准确性随着使用的B超图像数量的增加而提高,相关系数从0.475(1条线)上升到0.596(5条线)。布兰德-奥特曼分析表明,随着B超图像数量的增加,预测的和实际的FAZ面积之间的一致性得到改善,偏差减小和一致性界限变窄证明了这一点。
本研究成功开发了能够从OCT B超图像预测FAZ面积的机器学习模型。这些发现证明了使用OCT图像预测光学相干断层扫描血管造影(OCTA)数据的潜力,特别是在OCTA成像具有挑战性的人群中,如儿童和老年人。未来的研究可以探索FAZ和黄斑的发育机制,为不同年龄组的视网膜健康提供新的见解。