Suppr超能文献

外部可推广性的挑战:基于[镓]Ga-PSMA-11 PET的放射组学特征对原发性前列腺癌进行特征描述的双中心验证的见解,以组织病理学为参考。

The Challenge of External Generalisability: Insights from the Bicentric Validation of a [Ga]Ga-PSMA-11 PET Based Radiomics Signature for Primary Prostate Cancer Characterisation Using Histopathology as Reference.

作者信息

Ghezzo Samuele, Bharathi Praveen Gurunath, Duan Heying, Mapelli Paola, Sorgo Philipp, Davidzon Guido Alejandro, Bezzi Carolina, Chung Benjamin Inbeh, Samanes Gajate Ana Maria, Thong Alan Eih Chih, Russo Tommaso, Brembilla Giorgio, Loening Andreas Markus, Ghanouni Pejman, Grattagliano Anna, Briganti Alberto, De Cobelli Francesco, Sonn Geoffrey, Chiti Arturo, Iagaru Andrei, Moradi Farshad, Picchio Maria

机构信息

Faculty of Medicine and Surgery, Vita-Salute San Raffaele University, 20132 Milan, Italy.

Nuclear Medicine Department, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy.

出版信息

Cancers (Basel). 2024 Dec 7;16(23):4103. doi: 10.3390/cancers16234103.

Abstract

: PSMA PET radiomics is a promising tool for primary prostate cancer (PCa) characterisation. However, small single-centre studies and lack of external validation hinder definitive conclusions on the potential of PSMA PET radiomics in the initial workup of PCa. We aimed to validate a radiomics signature in a larger internal cohort and in an external cohort from a separate centre. : One hundred and twenty-seven PCa patients were retrospectively enrolled across two independent hospitals. The first centre (IRCCS San Raffaele Scientific Institute, Centre 1) contributed 62 [Ga]Ga-PSMA-11 PET scans, 20 patients classified as low-grade (ISUP grade < 4), and 42 as high-grade (ISUP grade ≥ 4). The second centre (Stanford University Hospital, Centre 2) provided 65 [Ga]Ga-PSMA-11 PET scans, and 49 low-grade and 16 high-grade patients. A radiomics model previously generated in Centre 1 was tested on the two cohorts separately and afterward on the entire dataset. Then, we evaluated whether the radiomics features selected in the previous investigation could generalise to new data. Several machine learning (ML) models underwent training and testing using 100-fold Monte Carlo cross-validation, independently at both Centre 1 and Centre 2, with a 70-30% train-test split. Additionally, models were trained in one centre and tested in the other, and vice versa. Furthermore, data from both centres were combined for training and testing using Monte Carlo cross-validation. Finally, a new radiomics signature built on this bicentric dataset was proposed. Several performance metrics were computed. The previously generated radiomics signature resulted in an area under the receiver operating characteristic curve (AUC) of 80.4% when tested on Centre 1, while it generalised poorly to Centre 2, where it reached an AUC of 62.7%. When the whole cohort was considered, AUC was 72.5%. Similarly, new ML models trained on the previously selected features yielded, at best, an AUC of 80.9% for Centre 1 and performed at chance for Centre 2 (AUC of 49.3%). A new signature built on this bicentric dataset reached, at best, an average AUC of 91.4% in the test set. The satisfying performance of radiomics models when used in the original development settings, paired with the poor performance otherwise observed, emphasises the need to consider centre-specific factors and dataset characteristics when developing radiomics models. Combining radiomics datasets is a viable strategy to reduce such centre-specific biases, but external validation is still needed.

摘要

前列腺特异性膜抗原(PSMA)正电子发射断层扫描(PET)影像组学是一种很有前景的用于原发性前列腺癌(PCa)特征描述的工具。然而,小规模的单中心研究以及缺乏外部验证阻碍了就PSMA PET影像组学在PCa初始检查中的潜力得出明确结论。我们旨在在一个更大的内部队列以及来自另一个中心的外部队列中验证一个影像组学特征。

在两家独立医院对127例PCa患者进行了回顾性纳入。第一个中心(圣拉斐尔科学研究所IRCCS,中心1)提供了62例[镓]镓-PSMA-11 PET扫描,其中20例患者分类为低级别(国际泌尿病理学会(ISUP)分级<4),42例为高级别(ISUP分级≥4)。第二个中心(斯坦福大学医院,中心2)提供了65例[镓]镓-PSMA-11 PET扫描,以及49例低级别和16例高级别患者。之前在中心1生成的一个影像组学模型分别在两个队列上进行测试,然后在整个数据集上进行测试。然后,我们评估了在之前的研究中选择的影像组学特征是否能推广到新数据。使用100倍蒙特卡洛交叉验证对几个机器学习(ML)模型进行训练和测试,在中心1和中心2独立进行,训练集与测试集的划分比例为70 - 30%。此外,模型在一个中心进行训练并在另一个中心进行测试,反之亦然。此外,将两个中心的数据合并用于使用蒙特卡洛交叉验证进行训练和测试。最后,基于这个双中心数据集构建了一个新的影像组学特征。计算了几个性能指标。之前生成的影像组学特征在中心1进行测试时,受试者操作特征曲线(AUC)下面积为80.4%,而在中心2的泛化性较差,AUC为62.7%。当考虑整个队列时,AUC为72.5%。同样,基于之前选择的特征训练的新ML模型,在中心1的最佳AUC为80.9%,在中心2则表现不佳(AUC为49.3%)。基于这个双中心数据集构建的一个新特征在测试集中的最佳平均AUC达到了91.4%。影像组学模型在原始开发环境中使用时表现令人满意,而在其他情况下观察到的性能不佳,这强调了在开发影像组学模型时需要考虑中心特异性因素和数据集特征。合并影像组学数据集是减少此类中心特异性偏差的可行策略,但仍需要外部验证。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f13d/11640655/fad471479cb8/cancers-16-04103-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验