Shevtsov Maxim, Pitkin Emil, Combs Stephanie E, Yudintceva Natalia, Nazarov Denis, Meulen Greg Van Der, Preucil Chris, Akkaoui Michael, Pitkin Mark
Department of Radiation Oncology, Technische Universität München (TUM), Klinikum Rechts der Isar, Ismaninger Str. 22, 81675 Munich, Germany.
Laboratory of Biomedical Nanotechnologies, Institute of Cytology of the Russian Academy of Sciences (RAS), 194064 Saint Petersburg, Russia.
Nanomaterials (Basel). 2024 Nov 22;14(23):1876. doi: 10.3390/nano14231876.
3D-printed microporous titanium scaffolds enjoy good biointegration with the residuum's soft and bone tissues, and they promote excellent biomechanical properties in attached prostheses. Implant-associated infection, however, remains a major clinical challenge. Silver-based implant coatings can potentially reduce bacterial growth and inhibit biofilm formation, thereby reducing the risk of periprosthetic infections. In the current study, a 1-µm thick silver coating was prepared on the surface of a 3D-printed microporous titanium alloy with physical vapor deposition (PVD), with a final silver content of 1.00 ± 02 mg/cm. Cell viability was evaluated with an MTT assay of MC3T3-E1 osteoblasts and human dermal fibroblasts cultured on the surface of the implants, and showed low cytotoxicity for cells during the 14-day follow-up period. Quantitative real-time polymerase chain reaction (RT-PCR) analysis of the relative gene expression of the extracellular matrix components (fibronectin, vitronectin, type I collagen) and cell adhesion markers (α2, α5, αV, β1 integrins) in dermal fibroblasts showed that cell adhesion was not reduced by the silver coating of the microporous implants. An RT-PCR analysis of gene expression related to osteogenic differentiation, including TGF-β1, SMAD4, osteocalcin, osteopontin, and osteonectin in MC3T3-E1 osteoblasts, demonstrated that silver coating did not reduce the osteogenic activity of cells and, to the contrary, enhanced the activity of the TGF-β signaling pathway. For representative sample S5 on day 14, the gene expression levels were 7.15 ± 0.29 (osteonectin), 6.08 ± 0.12 (osteocalcin), and 11.19 ± 0.77 (osteopontin). In conclusion, the data indicate that the silver coating of the microporous titanium implants did not reduce the biointegrative or osteoinductive properties of the titanium scaffold, a finding that argues in favor of applying this coating in designing personalized osseointegrated implants.
3D打印的微孔钛支架与残端的软组织和骨组织具有良好的生物整合性,并且它们能提升附着假体的优异生物力学性能。然而,植入相关感染仍然是一个重大的临床挑战。银基植入涂层有可能减少细菌生长并抑制生物膜形成,从而降低假体周围感染的风险。在当前研究中,通过物理气相沉积(PVD)在3D打印的微孔钛合金表面制备了一层1微米厚的银涂层,最终银含量为1.00±0.02毫克/平方厘米。通过对在植入物表面培养的MC3T3-E1成骨细胞和人皮肤成纤维细胞进行MTT检测来评估细胞活力,结果显示在14天的随访期内对细胞的细胞毒性较低。对皮肤成纤维细胞中细胞外基质成分(纤连蛋白、玻连蛋白、I型胶原蛋白)和细胞粘附标志物(α2、α5、αV、β1整合素)的相对基因表达进行定量实时聚合酶链反应(RT-PCR)分析表明,微孔植入物的银涂层并未降低细胞粘附。对MC3T3-E1成骨细胞中与成骨分化相关的基因表达进行RT-PCR分析,包括TGF-β1、SMAD4、骨钙素、骨桥蛋白和骨连接蛋白,结果表明银涂层并未降低细胞的成骨活性,相反,增强了TGF-β信号通路的活性。对于第14天的代表性样品S5,基因表达水平分别为7.15±0.29(骨连接蛋白)、6.08±0.12(骨钙素)和11.19±0.77(骨桥蛋白)。总之,数据表明微孔钛植入物的银涂层并未降低钛支架的生物整合或骨诱导性能,这一发现支持在设计个性化骨整合植入物时应用这种涂层。