Hao Xiaoyu, Yang Huixia, Niu Mengmeng, Wang Tingting, Ji Hongyan, Brumboiu Iulia Emilia, Grazioli Cesare, Guarnaccio Ambra, Cossaro Albano, Li Yan, Qiao Jingsi, Zhang Quanzhen, Liu Liwei, Zhang Teng, Wang Yeliang
School of Integrated Circuits and Electronics & Yangtze Delta Region Academy, Beijing Institute of Technology (BIT), Beijing 100081, China.
Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University in Toruń, 87-100 Toruń, Poland.
Nanomaterials (Basel). 2024 Dec 5;14(23):1952. doi: 10.3390/nano14231952.
In this study, we explore the substrate-mediated control of self-assembly behavior in diboron molecules (CHBO, BCat) using scanning tunneling microscopy (STM). The structural transformation of BCat molecules from one-dimensional (1D) molecular chains to two-dimensional (2D) molecular arrays was achieved by changing the substrate from Au(111) to bilayer graphene (BLG), highlighting the key role of substrate interactions in determining the assembly structure. Notably, the B-B bond in the molecular arrays on BLG is distinctly pronounced, reflecting a more refined molecular resolution with distinct electronic states than that on Au(111). Density functional theory (DFT) calculations confirm the weak interaction between BCat molecules and the BLG substrate, which facilitates the formation of 2D molecular arrays on BLG. This work demonstrates how controlling substrate properties enables the formation of 1D chains and 2D arrays, providing valuable insights for the design of next-generation molecular electronics and catalysis systems.
在本研究中,我们使用扫描隧道显微镜(STM)探索了二硼分子(CHBO、BCat)中底物介导的自组装行为控制。通过将底物从Au(111) 改为双层石墨烯(BLG),实现了BCat分子从一维(1D)分子链到二维(2D)分子阵列的结构转变,突出了底物相互作用在决定组装结构中的关键作用。值得注意的是,BLG上分子阵列中的B-B键明显突出,这反映出与Au(111) 上相比,具有不同电子态的分子分辨率更高。密度泛函理论(DFT)计算证实了BCat分子与BLG底物之间的弱相互作用,这有利于在BLG上形成二维分子阵列。这项工作展示了如何通过控制底物性质来形成一维链和二维阵列,为下一代分子电子学和催化系统的设计提供了有价值的见解。