Lores Nayla J, Aráoz Beatriz, Hung Xavier, Talou Mariano H, Boccaccini Aldo R, Abraham Gustavo A, Hermida Élida B, Caracciolo Pablo C
Research Institute for Materials Science and Technology, INTEMA (UNMdP-CONICET), Av. Colón 10850, Mar del Plata B7606BWV, Argentina.
Instituto de Tecnologías Emergentes y Ciencias Aplicadas (ITECA), Escuela de Ciencia y Tecnología (ECyT), Universidad Nacional de San Martín, CONICET, San Martín, Buenos Aires B1650, Argentina.
Polymers (Basel). 2024 Nov 29;16(23):3355. doi: 10.3390/polym16233355.
Biodegradable polymers and bioceramics give rise to composite structures that serve as scaffolds to promote tissue regeneration. The current research explores the preparation of biodegradable filaments for additive manufacturing. Bioresorbable segmented poly(ester urethanes) (SPEUs) are easily printable elastomers but lack bioactivity and present low elastic modulus, making them unsuitable for applications such as bone tissue engineering. Strategies such as blending and composite filament production still constitute an important challenge in addressing SPEU limitations. In this work, SPEU-poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) blends and SPEU-PHBV-Bioglass 45S5 (BG) composite materials were processed into filaments and 3D structures. A comprehensive characterization of their morphology and thermal and mechanical properties is presented. The production of 3D structures based on SPEU-PHBV with excellent dimensional precision was achieved. Although SPEU-PHBV-BG printed structures showed some defects associated with the printing process, the physicochemical, thermal, and mechanical properties of these materials hold promise. The blend composition, BG content and particle size, processing parameters, and blending techniques were carefully managed to ensure that the mechanical behavior of the material remained under control. The incorporation of PHBV in SPEU-PHBV at 70:30 / and BG (5 wt%) acted as reinforcement, enhancing both the elastic modulus of the filaments and the compressive mechanical behavior of the 3D matrices. The compressive stress of the printed scaffold was found to be 1.48 ± 0.13 MPa, which is optimal for tissues such as human proximal tibial trabecular bone. Therefore, these materials show potential for use in the design and manufacture of customized structures for bone tissue engineering.
可生物降解的聚合物和生物陶瓷形成了复合结构,这些结构可用作支架来促进组织再生。当前的研究探索用于增材制造的可生物降解长丝的制备。可生物吸收的嵌段聚(酯氨酯)(SPEU)是易于打印的弹性体,但缺乏生物活性且弹性模量低,这使得它们不适合用于骨组织工程等应用。诸如共混和复合长丝生产等策略在解决SPEU的局限性方面仍然构成重大挑战。在这项工作中,将SPEU - 聚(3 - 羟基丁酸酯 - 共 - 3 - 羟基戊酸酯)(PHBV)共混物和SPEU - PHBV - 生物玻璃45S5(BG)复合材料加工成长丝和3D结构。对它们的形态、热性能和力学性能进行了全面表征。实现了基于SPEU - PHBV的具有优异尺寸精度的3D结构的生产。尽管SPEU - PHBV - BG打印结构显示出一些与打印过程相关的缺陷,但这些材料的物理化学、热和力学性能具有前景。仔细控制共混物组成、BG含量和粒径、加工参数以及共混技术,以确保材料的力学行为可控。在SPEU - PHBV中以70:30的比例掺入PHBV和BG(5 wt%)起到了增强作用,提高了长丝的弹性模量和3D基质的压缩力学性能。发现打印支架的压缩应力为1.48±0.13 MPa,这对于诸如人胫骨近端小梁骨等组织来说是最佳的。因此,这些材料在设计和制造用于骨组织工程的定制结构方面显示出潜力。