文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

用于骨再生的聚己内酯/掺杂生物活性玻璃复合支架

Polycaprolactone/Doped Bioactive Glass Composite Scaffolds for Bone Regeneration.

作者信息

Pádua Ana Sofia, Graça Manuel Pedro Fernandes, Silva Jorge Carvalho

机构信息

CENIMAT|i3N, Department of Materials Science, School of Science and Technology, Nova University Lisbon, 2829-516 Caparica, Portugal.

i3N and Physics Department, Aveiro University, 3810-193 Aveiro, Portugal.

出版信息

J Funct Biomater. 2025 Jun 1;16(6):200. doi: 10.3390/jfb16060200.


DOI:10.3390/jfb16060200
PMID:40558887
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12193905/
Abstract

Critical-size bone defects do not heal spontaneously and require external support, making bone regeneration a central challenge in tissue engineering. Polymeric/ceramic composite scaffolds offer a promising approach to mimic the structural and biological properties of bone. In this study, we aimed to evaluate the effect of different doping oxides in bioactive glass (BG) on the performance of polycaprolactone (PCL)-based composite scaffolds for bone tissue engineering applications. Composite scaffolds were fabricated using solvent casting, hot pressing, and salt-leaching techniques, combining PCL with 25 wt% of BG or doped BG containing 4 mol% of tantalum, zinc, magnesium, or niobium oxides, and 1 mol% of copper oxide. The scaffolds were characterized in terms of morphology, mechanical properties, and in vitro biological performance. All scaffolds exhibited a highly porous, interconnected structure. Mechanical compression tests indicated that elastic modulus increased with ceramic content, while doping had no measurable effect. Cytotoxicity assays confirmed biocompatibility across all scaffolds. Among the tested materials, the Zn-doped BG/PCL scaffold uniquely supported cell adhesion and proliferation and significantly enhanced alkaline phosphatase (ALP) activity-an early marker of osteogenic differentiation-alongside the Nb-doped scaffold. These results highlight the Zn-doped BG/PCL composite as a promising candidate for bone regeneration applications.

摘要

临界尺寸的骨缺损无法自发愈合,需要外部支持,这使得骨再生成为组织工程中的一项核心挑战。聚合物/陶瓷复合支架为模拟骨的结构和生物学特性提供了一种很有前景的方法。在本研究中,我们旨在评估生物活性玻璃(BG)中不同掺杂氧化物对用于骨组织工程应用的聚己内酯(PCL)基复合支架性能的影响。采用溶剂浇铸、热压和盐析技术制备复合支架,将PCL与25 wt%的BG或含有4 mol%钽、锌、镁或铌氧化物以及1 mol%氧化铜的掺杂BG相结合。对支架的形态、力学性能和体外生物学性能进行了表征。所有支架均呈现出高度多孔的相互连接结构。机械压缩试验表明,弹性模量随陶瓷含量的增加而增加,而掺杂没有可测量的影响。细胞毒性试验证实了所有支架的生物相容性。在测试材料中,锌掺杂BG/PCL支架独特地支持细胞黏附和增殖,并显著增强碱性磷酸酶(ALP)活性——成骨分化的早期标志物——铌掺杂支架也有此效果。这些结果突出了锌掺杂BG/PCL复合材料作为骨再生应用的一个有前景的候选材料。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5270/12193905/47f9648847ce/jfb-16-00200-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5270/12193905/b4f5c1b86316/jfb-16-00200-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5270/12193905/fc8926a5d0ff/jfb-16-00200-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5270/12193905/429793a3a60a/jfb-16-00200-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5270/12193905/43638d9a70f3/jfb-16-00200-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5270/12193905/7dfa514df554/jfb-16-00200-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5270/12193905/3d165057a94f/jfb-16-00200-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5270/12193905/410499d8589c/jfb-16-00200-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5270/12193905/47f9648847ce/jfb-16-00200-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5270/12193905/b4f5c1b86316/jfb-16-00200-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5270/12193905/fc8926a5d0ff/jfb-16-00200-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5270/12193905/429793a3a60a/jfb-16-00200-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5270/12193905/43638d9a70f3/jfb-16-00200-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5270/12193905/7dfa514df554/jfb-16-00200-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5270/12193905/3d165057a94f/jfb-16-00200-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5270/12193905/410499d8589c/jfb-16-00200-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5270/12193905/47f9648847ce/jfb-16-00200-g008.jpg

相似文献

[1]
Polycaprolactone/Doped Bioactive Glass Composite Scaffolds for Bone Regeneration.

J Funct Biomater. 2025-6-1

[2]
Three-dimensional porous polycaprolactone/chitosan/bioactive glass scaffold for bone tissue engineering.

J Biomater Sci Polym Ed. 2024-12

[3]
Design and characterization of AgVO-HAP/GO@PCL ceramic-based scaffolds for enhanced wound healing and tissue regeneration.

J Mater Sci Mater Med. 2025-6-25

[4]
Improving biological and mechanical properties of bioprinted PCL-alginate-chondrocyte scaffolds for patellofemoral cartilage tissue regeneration.

J Biomater Sci Polym Ed. 2024-11

[5]
Injectable hydrogel scaffold incorporating microspheres containing cobalt-doped bioactive glass for bone healing.

J Biomed Mater Res A. 2024-12

[6]
Mineralized osteoblast-derived exosomes and 3D-printed ceramic-based scaffolds for enhanced bone healing: A preclinical exploration.

Acta Biomater. 2025-6-15

[7]
Incorporation of Poly(propylene succinate--glycerol succinate) (PPSG) as a Renewable Additive in Electrospun PCL Fibers with Bioactive Glass Particles for Soft Tissue Engineering.

ACS Appl Bio Mater. 2025-6-16

[8]
Computational Fluid Dynamics Modeling of Material Transport Through Triply Periodic Minimal Surface Scaffolds for Bone Tissue Engineering.

J Biomech Eng. 2025-3-1

[9]
Enamel matrix derivative (Emdogain) for periodontal tissue regeneration in intrabony defects. A Cochrane systematic review.

Eur J Oral Implantol. 2009

[10]
Enamel matrix derivative (Emdogain(R)) for periodontal tissue regeneration in intrabony defects.

Cochrane Database Syst Rev. 2009-10-7

本文引用的文献

[1]
3D-Printed Poly(ester urethane)/Poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/Bioglass Scaffolds for Tissue Engineering Applications.

Polymers (Basel). 2024-11-29

[2]
Treatment of Unfavorable Intrabony Defects with Autogenous Bone Graft in Combination with Leukocyte- and Platelet-Rich Fibrin or Collagen Membranes: A Non-Inferiority Study.

Medicina (Kaunas). 2024-7-3

[3]
Bioactive Glasses Containing Strontium or Magnesium Ions to Enhance the Biological Response in Bone Regeneration.

Nanomaterials (Basel). 2023-10-6

[4]
3D printing for bone regeneration: challenges and opportunities for achieving predictability.

Periodontol 2000. 2023-10

[5]
Antibacterial Biomaterial Based on Bioglass Modified with Copper for Implants Coating.

J Funct Biomater. 2023-7-13

[6]
Bioactive Glass Modified with Zirconium Incorporation for Dental Implant Applications: Fabrication, Structural, Electrical, and Biological Analysis.

Int J Mol Sci. 2023-6-24

[7]
Additive Manufacturing of Polymer/Bioactive Glass Scaffolds for Regenerative Medicine: A Review.

Polymers (Basel). 2023-5-26

[8]
Fabrication, Structural and Biological Characterization of Zinc-Containing Bioactive Glasses and Their Use in Membranes for Guided Bone Regeneration.

Materials (Basel). 2023-1-19

[9]
Chitosan scaffolds with mesoporous hydroxyapatite and mesoporous bioactive glass.

Prog Biomater. 2023-6

[10]
Preparation and In Vitro Characterization of Magnetic CS/PVA/HA/pSPIONs Scaffolds for Magnetic Hyperthermia and Bone Regeneration.

Int J Mol Sci. 2023-1-6

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索