Pádua Ana Sofia, Graça Manuel Pedro Fernandes, Silva Jorge Carvalho
CENIMAT|i3N, Department of Materials Science, School of Science and Technology, Nova University Lisbon, 2829-516 Caparica, Portugal.
i3N and Physics Department, Aveiro University, 3810-193 Aveiro, Portugal.
J Funct Biomater. 2025 Jun 1;16(6):200. doi: 10.3390/jfb16060200.
Critical-size bone defects do not heal spontaneously and require external support, making bone regeneration a central challenge in tissue engineering. Polymeric/ceramic composite scaffolds offer a promising approach to mimic the structural and biological properties of bone. In this study, we aimed to evaluate the effect of different doping oxides in bioactive glass (BG) on the performance of polycaprolactone (PCL)-based composite scaffolds for bone tissue engineering applications. Composite scaffolds were fabricated using solvent casting, hot pressing, and salt-leaching techniques, combining PCL with 25 wt% of BG or doped BG containing 4 mol% of tantalum, zinc, magnesium, or niobium oxides, and 1 mol% of copper oxide. The scaffolds were characterized in terms of morphology, mechanical properties, and in vitro biological performance. All scaffolds exhibited a highly porous, interconnected structure. Mechanical compression tests indicated that elastic modulus increased with ceramic content, while doping had no measurable effect. Cytotoxicity assays confirmed biocompatibility across all scaffolds. Among the tested materials, the Zn-doped BG/PCL scaffold uniquely supported cell adhesion and proliferation and significantly enhanced alkaline phosphatase (ALP) activity-an early marker of osteogenic differentiation-alongside the Nb-doped scaffold. These results highlight the Zn-doped BG/PCL composite as a promising candidate for bone regeneration applications.
临界尺寸的骨缺损无法自发愈合,需要外部支持,这使得骨再生成为组织工程中的一项核心挑战。聚合物/陶瓷复合支架为模拟骨的结构和生物学特性提供了一种很有前景的方法。在本研究中,我们旨在评估生物活性玻璃(BG)中不同掺杂氧化物对用于骨组织工程应用的聚己内酯(PCL)基复合支架性能的影响。采用溶剂浇铸、热压和盐析技术制备复合支架,将PCL与25 wt%的BG或含有4 mol%钽、锌、镁或铌氧化物以及1 mol%氧化铜的掺杂BG相结合。对支架的形态、力学性能和体外生物学性能进行了表征。所有支架均呈现出高度多孔的相互连接结构。机械压缩试验表明,弹性模量随陶瓷含量的增加而增加,而掺杂没有可测量的影响。细胞毒性试验证实了所有支架的生物相容性。在测试材料中,锌掺杂BG/PCL支架独特地支持细胞黏附和增殖,并显著增强碱性磷酸酶(ALP)活性——成骨分化的早期标志物——铌掺杂支架也有此效果。这些结果突出了锌掺杂BG/PCL复合材料作为骨再生应用的一个有前景的候选材料。
J Funct Biomater. 2025-6-1
J Biomater Sci Polym Ed. 2024-12
J Mater Sci Mater Med. 2025-6-25
J Biomed Mater Res A. 2024-12
Cochrane Database Syst Rev. 2009-10-7
Nanomaterials (Basel). 2023-10-6
Periodontol 2000. 2023-10
J Funct Biomater. 2023-7-13
Polymers (Basel). 2023-5-26
Prog Biomater. 2023-6