Singh Shikha, Hubert Pascal
Department of Mechanical Engineering, McGill University, Montreal, QC H3A 0C3, Canada.
CREPEC-Research Centre for High-Performance Polymer and Composite Systems, Montreal, QC H3A 0C3, Canada.
Polymers (Basel). 2024 Nov 30;16(23):3384. doi: 10.3390/polym16233384.
The demand for high-performance polymers in 3D printing continues to grow due to their ability to produce intricate and complex structures. However, commercially available high-temperature 3D printing materials often exhibit limitations such as brittleness, warping, thermal sensitivity, and high costs, highlighting the need for advanced filament development. This study investigates the fabrication of polyetherimide (PEI) and polycarbonate (PC) blends via melt extrusion to enhance material properties for stable additive manufacturing. The addition of PC improved the processability of the blends, enabling successful extrusion at temperatures ranging from 290 to 310 °C. Differential scanning calorimetry (DSC) confirmed a shift in the softening temperature (T) of PEI, indicating effective blending. To further improve the properties of the PEI:PC blends, 1 wt% of a compatibilizer was incorporated, resulting in homogeneous microstructures as observed through scanning electron microscopy (SEM). The optimized PEI:PC (70:30) blend with compatibilizer (1 wt%) demonstrated a 49% higher storage modulus than neat PEI and a 40% greater storage modulus than ULTEM9085. Moreover, reduced melt viscosity facilitated consistent and stable printing, making these materials highly suitable for applications in aerospace and transportation, where performance and reliability are critical.
由于能够制造复杂精细的结构,3D打印中对高性能聚合物的需求持续增长。然而,市售的高温3D打印材料常常表现出诸如脆性、翘曲、热敏感性和高成本等局限性,这凸显了开发先进长丝的必要性。本研究通过熔融挤出研究聚醚酰亚胺(PEI)和聚碳酸酯(PC)共混物的制造,以增强材料性能用于稳定的增材制造。PC的添加改善了共混物的加工性能,使得在290至310°C的温度范围内能够成功挤出。差示扫描量热法(DSC)证实了PEI的软化温度(T)发生了变化,表明共混有效。为了进一步改善PEI:PC共混物的性能,加入了1 wt%的增容剂,通过扫描电子显微镜(SEM)观察到形成了均匀的微观结构。含有增容剂(1 wt%)的优化后的PEI:PC(70:30)共混物的储能模量比纯PEI高49%,比ULTEM9085高40%。此外,降低的熔体粘度有助于实现一致且稳定的打印,使得这些材料非常适合在航空航天和交通运输等对性能和可靠性要求极高的领域应用。