Mian Syed Hammad, Umer Usama, Moiduddin Khaja, Alkhalefah Hisham
Advanced Manufacturing Institute, King Saud University, Riyadh 11421, Saudi Arabia.
King Salman Center for Disability Research, Riyadh 11614, Saudi Arabia.
Polymers (Basel). 2024 Apr 26;16(9):1220. doi: 10.3390/polym16091220.
Three-dimensional printing-especially with fused deposition modeling (FDM)-is widely used in the medical field as it enables customization. FDM is versatile owing to the availability of various materials, but selecting the appropriate material for a certain application can be challenging. Understanding materials' mechanical behaviors, particularly those of polymeric materials, is vital to determining their suitability for a given application. Physical testing with universal testing machines is the most used method for determining the mechanical behaviors of polymers. This method is resource-intensive and requires cylinders for compression testing and unique dumbbell-shaped specimens for tensile testing. Thus, a specialized fixture must be designed to conduct mechanical testing for the customized orthosis, which is costly and time-consuming. Finite element (FE) analysis using an appropriate material model must be performed to identify the mechanical behaviors of a customized shape (e.g., an orthosis). This study analyzed three material models, namely the Bergström-Boyce (BB), three-network (TN), and three-network viscoplastic (TNV) models, to determine the mechanical behaviors of polymer materials for personalized upper limb orthoses and examined three polymer materials: PLA, ABS, and PETG. The models were first calibrated for each material using experimental data. Once the models were calibrated and found to fit the data appropriately, they were employed to examine the customized orthosis's mechanical behaviors through FE analysis. This approach is innovative in that it predicts the mechanical characteristics of a personalized orthosis by combining theoretical and experimental investigations.
三维打印——尤其是熔融沉积建模(FDM)——在医学领域被广泛应用,因为它能够实现定制化。由于有各种材料可供使用,FDM具有通用性,但为特定应用选择合适的材料可能具有挑战性。了解材料的力学行为,尤其是聚合物材料的力学行为,对于确定它们在给定应用中的适用性至关重要。使用万能试验机进行物理测试是确定聚合物力学行为最常用的方法。这种方法资源密集,压缩测试需要圆柱体,拉伸测试需要独特的哑铃形试样。因此,必须设计专门的夹具来对定制的矫形器进行力学测试,这既昂贵又耗时。必须使用合适的材料模型进行有限元(FE)分析,以识别定制形状(如矫形器)的力学行为。本研究分析了三种材料模型,即伯格斯特龙-博伊斯(BB)模型、三网络(TN)模型和三网络粘塑性(TNV)模型,以确定用于个性化上肢矫形器的聚合物材料的力学行为,并研究了三种聚合物材料:聚乳酸(PLA)、丙烯腈-丁二烯-苯乙烯共聚物(ABS)和聚对苯二甲酸乙二醇酯-1,4-环己烷二甲醇酯(PETG)。首先使用实验数据对每种材料的模型进行校准。一旦模型校准并发现与数据拟合良好,就通过有限元分析使用这些模型来研究定制矫形器的力学行为。这种方法具有创新性,因为它通过结合理论和实验研究来预测个性化矫形器的力学特性。