Suppr超能文献

基于多时间尺度分析和机器学习的碳纤维复合材料疲劳损伤分析高效预测

Efficient Prediction of Fatigue Damage Analysis of Carbon Fiber Composites Using Multi-Timescale Analysis and Machine Learning.

作者信息

Yoshimori Satoru, Koyanagi Jun, Matsuzaki Ryosuke

机构信息

Department of Mechanical and Aerospace Engineering, Tokyo University of Science, 2641 Yamazaki, Noda 278-8510, Japan.

Department of Materials Science and Technology, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan.

出版信息

Polymers (Basel). 2024 Dec 9;16(23):3448. doi: 10.3390/polym16233448.

Abstract

Carbon fiber reinforced plastic (CFRP) possesses numerous advantages, such as a light weight and high strength; however, its complex damage mechanisms make the evaluation of fatigue damage particularly challenging. Therefore, this study proposed and demonstrated an entropy-based damage evaluation model for CFRP that leverages the entropy derived from heat capacity measurements and does not require knowledge of the loading history. This entropy-based fatigue degradation model, though accurate, is computationally intensive and impractical for high-cycle analysis. To address this, we reduce computational cost through multi-timescale analysis, replacing cyclic loading with constant displacement loading. Characteristic variables are optimized using the machine learning model LightGBM and the response surface method (RSM), with LightGBM achieving a 75% lower root mean squared error than RSM by increasing features from 3 to 21. This approach cuts analysis time by over 90% while retaining predictive accuracy, showing that LightGBM outperforms RSM and that multi-timescale analysis effectively reduces computational demands.

摘要

碳纤维增强塑料(CFRP)具有许多优点,如重量轻、强度高;然而,其复杂的损伤机制使得疲劳损伤评估极具挑战性。因此,本研究提出并论证了一种基于熵的CFRP损伤评估模型,该模型利用热容量测量得出的熵,且不需要加载历史的相关知识。这种基于熵的疲劳退化模型虽然准确,但计算量大,对于高周分析不实用。为了解决这个问题,我们通过多时间尺度分析降低计算成本,用恒定位移加载代替循环加载。使用机器学习模型LightGBM和响应面法(RSM)对特征变量进行优化,通过将特征从3个增加到21个,LightGBM的均方根误差比RSM降低了75%。这种方法在保持预测准确性的同时,将分析时间缩短了90%以上,表明LightGBM优于RSM,且多时间尺度分析有效地降低了计算需求。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8961/11644517/8e4d7c2d084f/polymers-16-03448-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验