Suppr超能文献

血管舒张活性的分子建模:通过密度泛函理论、定量构效关系和分子动力学揭示新的候选物

Molecular Modeling of Vasodilatory Activity: Unveiling Novel Candidates Through Density Functional Theory, QSAR, and Molecular Dynamics.

作者信息

Bernal Anthony, Márquez Edgar A, Flores-Sumoza Máryury, Cuesta Sebastián A, Mora José Ramón, Paz José L, Mendoza-Mendoza Adel, Rodríguez-Macías Juan, Salazar Franklin, Insuasty Daniel, Marrero-Ponce Yovani, Agüero-Chapin Guillermin, Flores-Morales Virginia, Carrascal-Hernández Domingo César

机构信息

Grupo de Investigaciones en Química y Biología, Departamento de Química y Biología, Facultad de Ciencias Básicas, Universidad del Norte, Carrera 51B, Km 5, vía Puerto Colombia, Barranquilla 081007, Colombia.

Facultad de Ciencias Básicas y Biomédicas, Programa de Química y Farmacia, Universidad Simón Bolívar, Carrera 59 N 59-65, Barranquilla 080002, Colombia.

出版信息

Int J Mol Sci. 2024 Nov 25;25(23):12649. doi: 10.3390/ijms252312649.

Abstract

Cardiovascular diseases (CVD) pose a significant global health challenge, requiring innovative therapeutic strategies. Vasodilators, which are central to vasodilation and blood pressure reduction, play a crucial role in cardiovascular treatment. This study integrates quantitative structure- (QSAR) modeling and molecular dynamics (MD) simulations to predict the biological activity and interactions of vasodilatory compounds with the aim to repurpose drugs already known and estimateing their potential use as vasodilators. By exploring molecular descriptors, such as electronegativity, softness, and highest occupied molecular orbital (HOMO) energy, this study identifies key structural features influencing vasodilatory effects, as it seems molecules with the same mechanism of actions present similar frontier orbitals pattern. The QSAR model was built using fifty-four Food Drugs Administration-approved (FDA-approved) compounds used in cardiovascular treatment and their activities in rat thoracic aortic rings; several molecular descriptors, such as electronic, thermodynamics, and topographic were used. The best QSAR model was validated through robust training and test dataset split, demonstrating high predictive accuracy in drug design. The validated model was applied on the FDA dataset and molecules in the application domain with high predicted activity were retrieved and filtered. Thirty molecules with the best-predicted pKI50 were further analyzed employing molecular orbital frontiers and classified as angiotensin-I or β1-adrenergic inhibitors; then, the best scoring values obtained from molecular docking were used to perform a molecular dynamics simulation, providing insight into the dynamic interactions between vasodilatory compounds and their targets, elucidating the strength and stability of these interactions over time. According to the binding energies results, this study identifies novel vasodilatory candidates where Dasabuvir and Sertindole seem to have potent and selective activity, offering promising avenues for the development of next-generation cardiovascular therapies. Finally, this research bridges computational modelling with experimental validation, providing valuable insight for the design of optimized vasodilatory agents to address critical unmet needs in cardiovascular medicine.

摘要

心血管疾病(CVD)是一项重大的全球健康挑战,需要创新的治疗策略。血管舒张剂是血管舒张和降低血压的核心,在心血管治疗中起着至关重要的作用。本研究整合定量构效关系(QSAR)建模和分子动力学(MD)模拟,以预测血管舒张化合物的生物活性和相互作用,旨在重新利用已知药物并评估它们作为血管舒张剂的潜在用途。通过探索诸如电负性、柔软度和最高占据分子轨道(HOMO)能量等分子描述符,本研究确定了影响血管舒张作用的关键结构特征,因为具有相同作用机制的分子呈现出相似的前沿轨道模式。QSAR模型是使用54种用于心血管治疗的美国食品药品监督管理局(FDA)批准的化合物及其在大鼠胸主动脉环中的活性构建的;使用了几种分子描述符,如电子、热力学和拓扑学描述符。通过稳健的训练和测试数据集划分对最佳QSAR模型进行了验证,证明其在药物设计中具有较高的预测准确性。将经过验证的模型应用于FDA数据集,并检索和筛选了应用领域中预测活性高的分子。对预测pKI50最佳的30个分子进一步采用分子轨道前沿进行分析,并归类为血管紧张素-I或β1-肾上腺素能抑制剂;然后,将分子对接获得的最佳评分值用于进行分子动力学模拟,深入了解血管舒张化合物与其靶点之间的动态相互作用,阐明这些相互作用随时间的强度和稳定性。根据结合能结果,本研究确定了新型血管舒张候选物,其中达沙布韦和舍吲哚似乎具有强效和选择性活性,为下一代心血管疗法的开发提供了有希望的途径。最后,本研究将计算建模与实验验证相结合,为设计优化的血管舒张剂以满足心血管医学中关键的未满足需求提供了有价值的见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/acaa/11641664/48f6f44aa483/ijms-25-12649-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验