Suppr超能文献

通过TLL1实现磷利用效率的分子机制

Molecular Mechanisms of Phosphate Use Efficiency in via TLL1.

作者信息

Agisha Valiya Nadakkakath, Suraby Erinjery Jose, Dhandapani Savitha, Sng Yee Hwui, Lim Shi Hui, Park Bong Soo

机构信息

Temasek Life Sciences Laboratory, National University of Singapore, Singapore 117604, Singapore.

出版信息

Int J Mol Sci. 2024 Nov 29;25(23):12865. doi: 10.3390/ijms252312865.

Abstract

Beneficial fungi are promising tools for enhancing plant growth and crop yield in stressful environments. TLL1 (POT1) was identified as a potential biofertilizer enhancing plant growth and phosphate use efficiency especially under phosphate deficiency stress. Hence, we attempted to explore bioinformatic insights into how POT1 enhances plant growth under phosphate starvation. In our study, wild-type Columbia-0 roots and shoots cultivated with POT1 under phosphate-limiting conditions were employed for comparative analyses. By integrating transcriptomic and proteomic data, we identified key molecular pathways regulated by POT1 that influenced phosphate acquisition and plant stress tolerance. Comprehensive RNA-seq analysis revealed significant upregulation of genes involved in phosphate transport, root architecture, and stress-related pathways, while proteome profiling further highlighted proteins associated with lipid remodeling, phosphate metabolism, and phytohormone signaling. Bioinformatic analyses of differentially expressed genes (DEGs) and proteins (DEPs) elucidated the complex regulatory networks at both transcriptional and translational levels, with key contributions from auxin and ethylene signaling. Our study demonstrated that POT1-treated plants exhibited enhanced root development and nutrient uptake under phosphate-deficient conditions, driven by the coordinated regulation of phosphate solubilization genes and stress-responsive proteins. Our findings underscore the potential of multi-omics approaches in unraveling the molecular mechanisms behind plant-microbe interactions, with implications for improving sustainable agricultural practices.

摘要

有益真菌是在胁迫环境中促进植物生长和提高作物产量的有前景的工具。TLL1(POT1)被鉴定为一种潜在的生物肥料,尤其在缺磷胁迫下能促进植物生长并提高磷利用效率。因此,我们试图通过生物信息学方法探究POT1在缺磷条件下促进植物生长的机制。在我们的研究中,使用在磷限制条件下用POT1培养的野生型哥伦比亚-0根系和地上部分进行比较分析。通过整合转录组学和蛋白质组学数据,我们确定了由POT1调控的影响磷吸收和植物胁迫耐受性的关键分子途径。全面的RNA测序分析显示,参与磷转运、根系结构和胁迫相关途径的基因显著上调,而蛋白质组分析进一步突出了与脂质重塑、磷代谢和植物激素信号传导相关的蛋白质。对差异表达基因(DEGs)和蛋白质(DEPs)的生物信息学分析阐明了转录和翻译水平上的复杂调控网络,其中生长素和乙烯信号传导起了关键作用。我们的研究表明,在缺磷条件下,经POT1处理的植物根系发育和养分吸收增强,这是由磷溶解基因和胁迫响应蛋白的协同调控驱动的。我们的研究结果强调了多组学方法在揭示植物-微生物相互作用背后分子机制方面的潜力,对改进可持续农业实践具有重要意义。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9977/11640997/ad4b878abba8/ijms-25-12865-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验