Suppr超能文献

人类中耳植入物的见解:发现双稳态。

Insights into Human Middle Ear Implants: Uncovered Bistability.

作者信息

Zablotni Robert, Zając Grzegorz, Rusinek Rafal

机构信息

Department of Applied Mechanics, Mechanical Engineering Faculty, Lublin University of Technology, Nadbystrzycka 36, 20-618 Lublin, Poland.

Department of Power Engineering and Transportation, Faculty of Production Engineering, University of Life Sciences in Lublin, Głeboka 28, 20-612 Lublin, Poland.

出版信息

Materials (Basel). 2024 Nov 23;17(23):5730. doi: 10.3390/ma17235730.

Abstract

This study delves into the intricate mechanics of human middle ear implants by examining a lumped parameter model with five degrees of freedom to estimate sound transfer. The ASTM standard, recognized globally as a benchmark, served as a reference for analysis, ensuring test accuracy and providing a comprehensive evaluation framework. To assess the implant's usability, numerical simulations were conducted and compared against both the ASTM standard and the experimental results obtained from temporal bone studies. This investigation uncovered the bistability of periodic responses induced by the implant, prompting an analysis of the bistability in periodic solutions and the creation of basins of attraction for various initial conditions. The discovery of new solutions underscores this study's significance in the operation and reliability of implants. Consequently, this research not only enhances the theoretical comprehension of the system, but also holds promise for practical applications in the design and optimization of middle ear implants that transfer energy to the stapes and the cochlea.

摘要

本研究通过检查一个具有五个自由度的集总参数模型来深入探究人类中耳植入物的复杂力学原理,以估计声音传递。被全球公认为基准的ASTM标准用作分析参考,确保测试准确性并提供全面的评估框架。为评估植入物的可用性,进行了数值模拟,并与ASTM标准以及从颞骨研究中获得的实验结果进行比较。该调查发现了由植入物引起的周期性响应的双稳性,促使对周期解中的双稳性进行分析,并为各种初始条件创建吸引域。新解的发现突出了本研究在植入物操作和可靠性方面的重要性。因此,这项研究不仅增强了对该系统的理论理解,而且在将能量传递到镫骨和耳蜗的中耳植入物的设计和优化的实际应用中也有前景。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2a82/11642658/b7092183e576/materials-17-05730-g003.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验