Suppr超能文献

基于深度学习的锥形束 CT 生成腹部儿科放射治疗用合成 CT。

Deep learning based synthetic CT from cone beam CT generation for abdominal paediatric radiotherapy.

机构信息

Centre for Medical Image Computing, Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom.

Wellcome/EPSRC Centre for Interventional and Surgical Sciences, University College London, London, United Kingdom.

出版信息

Phys Med Biol. 2023 May 5;68(10):105006. doi: 10.1088/1361-6560/acc921.

Abstract

. Adaptive radiotherapy workflows require images with the quality of computed tomography (CT) for re-calculation and re-optimisation of radiation doses. In this work we aim to improve the quality of on-board cone beam CT (CBCT) images for dose calculation using deep learning.. We propose a novel framework for CBCT-to-CT synthesis using cycle-consistent Generative Adversarial Networks (cycleGANs). The framework was tailored for paediatric abdominal patients, a challenging application due to the inter-fractional variability in bowel filling and small patient numbers. We introduced to the networks the concept of global residuals only learning and modified the cycleGAN loss function to explicitly promote structural consistency between source and synthetic images. Finally, to compensate for the anatomical variability and address the difficulties in collecting large datasets in the paediatric population, we applied a smart 2D slice selection based on the common field-of-view (abdomen) to our imaging dataset. This acted as a weakly paired data approach that allowed us to take advantage of scans from patients treated for a variety of malignancies (thoracic-abdominal-pelvic) for training purposes. We first optimised the proposed framework and benchmarked its performance on a development dataset. Later, a comprehensive quantitative evaluation was performed on an unseen dataset, which included calculating global image similarity metrics, segmentation-based measures and proton therapy-specific metrics.. We found improved performance for our proposed method, compared to a baseline cycleGAN implementation, on image-similarity metrics such as Mean Absolute Error calculated for a matched virtual CT (55.0 ± 16.6 HU proposed versus 58.9 ± 16.8 HU baseline). There was also a higher level of structural agreement for gastrointestinal gas between source and synthetic images measured using the dice similarity coefficient (0.872 ± 0.053 proposed versus 0.846 ± 0.052 baseline). Differences found in water-equivalent thickness metrics were also smaller for our method (3.3 ± 2.4% proposed versus 3.7 ± 2.8% baseline).. Our findings indicate that our innovations to the cycleGAN framework improved the quality and structure consistency of the synthetic CTs generated.

摘要

. 自适应放疗工作流程需要具有 CT 质量的图像,以便重新计算和优化辐射剂量。在这项工作中,我们旨在通过深度学习提高用于剂量计算的机载锥形束 CT(CBCT)图像的质量。. 我们提出了一种使用循环一致生成对抗网络(cycleGAN)进行 CBCT 到 CT 合成的新框架。该框架针对儿科腹部患者进行了定制,由于肠腔充盈的分次间变化和患者数量较少,这是一个具有挑战性的应用。我们向网络引入了全局残差仅学习的概念,并修改了 cycleGAN 损失函数,以明确促进源图像和合成图像之间的结构一致性。最后,为了补偿解剖学变异性并解决在儿科人群中收集大量数据集的困难,我们在成像数据集上应用了基于共同视野(腹部)的智能 2D 切片选择。这充当了一种弱配对数据方法,使我们能够利用接受各种恶性肿瘤(胸腹部骨盆)治疗的患者的扫描进行培训。我们首先优化了所提出的框架,并在开发数据集上对其性能进行了基准测试。后来,我们在一个未见过的数据集上进行了全面的定量评估,其中包括计算全局图像相似性度量,基于分割的度量和质子治疗特定的度量。. 与基线 cycleGAN 实现相比,我们发现所提出的方法在图像相似性度量方面的性能得到了提高,例如为匹配的虚拟 CT 计算的平均绝对误差(55.0 ± 16.6 HU 提出,58.9 ± 16.8 HU 基线)。在源和合成图像之间使用骰子相似系数(0.872 ± 0.053 提出,0.846 ± 0.052 基线)测量的胃肠道气体之间也存在更高的结构一致性。我们的方法在水等效厚度度量方面的差异也较小(3.3 ± 2.4% 提出,3.7 ± 2.8% 基线)。. 我们的研究结果表明,我们对 cycleGAN 框架的创新提高了生成的合成 CT 的质量和结构一致性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2f9c/10160738/1b8400a0693f/pmbacc921f1_lr.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验