Tian Peng, Han Yang, Li Weiping, Yang Xiongwei, Wang Mingxu, Yu Jianjun
State Key Laboratory of ASIC and System, Key Laboratory for Information Science of Electromagnetic Waves (MoE), School of Information Science and Technology, Fudan University, Shanghai 200433, China.
Sensors (Basel). 2024 Nov 27;24(23):7592. doi: 10.3390/s24237592.
In terahertz communication systems, lens antennas used in transceivers are basically plano-convex dielectric lenses. The size of a plano-convex lens increases as the aperture increases, and thinner lenses have longer focal lengths. Through theory and simulation, we designed a Fresnel lens suitable for the terahertz band to meet the requirements of large aperture and short focal length, and simulated the performance, advantages, and disadvantages of the terahertz Fresnel lens. A 300 GHz terahertz wireless communication system was built to verify the gain effect of the Fresnel lens antenna. The experimental results demonstrate that the Fresnel lens can be used for long-distance terahertz communication with larger aperture diameters, overcoming the limitations of traditional plano-convex lenses. The theoretical gain of a 30 cm Fresnel lens is 48.83 dB, while the actual measured gain is approximately 45 dB.
在太赫兹通信系统中,收发器中使用的透镜天线基本上是平凸介质透镜。平凸透镜的尺寸随着孔径的增加而增大,并且更薄的透镜焦距更长。通过理论和仿真,我们设计了一种适用于太赫兹频段的菲涅尔透镜,以满足大孔径和短焦距的要求,并对太赫兹菲涅尔透镜的性能、优点和缺点进行了仿真。构建了一个300GHz的太赫兹无线通信系统,以验证菲涅尔透镜天线的增益效果。实验结果表明,菲涅尔透镜可用于更大孔径直径的长距离太赫兹通信,克服了传统平凸透镜的局限性。一个30厘米菲涅尔透镜的理论增益为48.83dB,而实际测量的增益约为45dB。