Yu Jianjun, Chen Jiali
Key Laboratory for Information Science of Electromagnetic Waves (MoE), Fudan University, Shanghai 200433, China.
Micromachines (Basel). 2025 Jul 20;16(7):828. doi: 10.3390/mi16070828.
THz communication stands as a pivotal technology for 6G networks, designed to address the critical challenge of data demands surpassing current microwave and millimeter-wave (mmWave) capabilities. However, realizing Tbps and kilometer-range transmission confronts the "dual attenuation dilemma" comprising severe free-space path loss (FSPL) (>120 dB/km) and atmospheric absorption. This review comprehensively summarizes our group's advancements in overcoming fundamental challenges of long-distance THz communication. Through systematic photonic-electronic co-optimization, we report key enabling technologies including photonically assisted THz signal generation, polarization-multiplexed multiple-input multiple-output (MIMO) systems with maximal ratio combining (MRC), high-gain antenna-lens configurations, and InP amplifier systems for complex weather resilience. Critical experimental milestones encompass record-breaking 1.0488 Tbps throughput using probabilistically shaped 64QAM (PS-64QAM) in the 330-500 GHz band; 30.2 km D-band transmission (18 Gbps with 543.6 Gbps·km capacity-distance product); a 3 km fog-penetrating link at 312 GHz; and high-sensitivity SIMO-validated 100 Gbps satellite-terrestrial communication beyond 36,000 km. These findings demonstrate THz communication's viability for 6G networks requiring extreme-capacity backhaul and ultra-long-haul connectivity.
太赫兹通信是6G网络的关键技术,旨在应对数据需求超过当前微波和毫米波(mmWave)能力这一严峻挑战。然而,要实现太比特每秒(Tbps)和千米级别的传输,面临着由严重的自由空间路径损耗(FSPL)(>120 dB/km)和大气吸收构成的“双重衰减困境”。本综述全面总结了我们团队在克服长距离太赫兹通信基本挑战方面取得的进展。通过系统的光子 - 电子协同优化,我们报告了关键的使能技术,包括光子辅助太赫兹信号生成、采用最大比合并(MRC)的偏振复用多输入多输出(MIMO)系统、高增益天线 - 透镜配置以及用于复杂天气适应性的磷化铟(InP)放大器系统。关键的实验里程碑包括:在330 - 500 GHz频段使用概率整形64QAM(PS - 64QAM)实现破纪录的1.0488 Tbps吞吐量;30.2 km的D波段传输(18 Gbps,容量 - 距离积为543.6 Gbps·km);在312 GHz实现3 km的雾穿透链路;以及在超过36,000 km的距离上通过高灵敏度单输入多输出(SIMO)验证的100 Gbps卫星 - 地面通信。这些发现证明了太赫兹通信对于需要极高容量回程和超长距离连接的6G网络的可行性。