Suppr超能文献

使用鞋内运动传感器评估步态期间膝关节运动损伤的估计指标:一项可行性研究。

Estimating Indicators for Assessing Knee Motion Impairment During Gait Using In-Shoe Motion Sensors: A Feasibility Study.

作者信息

Ihara Kazuki, Huang Chenhui, Nihey Fumiyuki, Kajitani Hiroshi, Nakahara Kentaro

机构信息

Biometrics Research Labs, NEC Corporation, Hinode 1131, Abiko 270-1198, Chiba, Japan.

出版信息

Sensors (Basel). 2024 Nov 28;24(23):7615. doi: 10.3390/s24237615.

Abstract

Knee joint function deterioration significantly impacts quality of life. This study developed estimation models for ten knee indicators using data from in-shoe motion sensors to assess knee movement during everyday activities. Sixty-six healthy young participants were involved, and multivariate linear regression was employed to construct the models. The results showed that eight out of ten models achieved a "fair" to "good" agreement based on intra-class correlation coefficients (ICCs), with three knee joint angle indicators reaching the "fair" agreement. One temporal indicator model displayed a "good" agreement, while another had a "fair" agreement. For the angular jerk cost indicators, three out of four attained a "fair" or "good" agreement. The model accuracy was generally acceptable, with the mean absolute error ranging from 0.54 to 0.75 times the standard deviation of the true values and errors less than 1% from the true mean values. The significant predictors included the sole-to-ground angles, particularly the foot posture angles in the sagittal and frontal planes. These findings support the feasibility of estimating knee function solely from foot motion data, offering potential for daily life monitoring and rehabilitation applications. However, discrepancies in the two models were influenced by the variance in the baseline knee flexion and sensor placement. Future work will test these models on older and osteoarthritis-affected individuals to evaluate their broader applicability, with prospects for user-tailored rehabilitation applications. This study is a step towards simplified, accessible knee health monitoring through wearable technology.

摘要

膝关节功能恶化会显著影响生活质量。本研究利用鞋内运动传感器的数据,针对十个膝关节指标开发了估计模型,以评估日常活动中的膝关节运动。研究纳入了66名健康的年轻参与者,并采用多元线性回归构建模型。结果显示,基于组内相关系数(ICC),十个模型中有八个达成了“一般”到“良好”的一致性,其中三个膝关节角度指标达到了“一般”一致性。一个时间指标模型显示出“良好”一致性,另一个则为“一般”一致性。对于角加速度成本指标,四个中有三个达到了“一般”或“良好”一致性。模型准确性总体上可以接受,平均绝对误差范围为真实值标准差的0.54至0.75倍,误差与真实均值相差不到1%。显著预测因素包括鞋底与地面的角度,特别是矢状面和额状面的足部姿势角度。这些发现支持仅从足部运动数据估计膝关节功能的可行性,为日常生活监测和康复应用提供了潜力。然而,两个模型中的差异受到基线膝关节屈曲和传感器放置差异的影响。未来的工作将在老年人和骨关节炎患者中测试这些模型,以评估其更广泛的适用性,有望实现个性化康复应用。本研究是朝着通过可穿戴技术实现简化、便捷的膝关节健康监测迈出的一步。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7528/11644616/24f90b72dcec/sensors-24-07615-g003.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验