Suppr超能文献

基于肌电信号的堆叠式一维卷积长短期记忆模型对无约束行走过程中垂直地面反作用力的估计

Myoelectric-Based Estimation of Vertical Ground Reaction Force During Unconstrained Walking by a Stacked One-Dimensional Convolutional Long Short-Term Memory Model.

作者信息

Mengarelli Alessandro, Tigrini Andrea, Scattolini Mara, Mobarak Rami, Burattini Laura, Fioretti Sandro, Verdini Federica

机构信息

Department of Information Engineering, Università Politecnica delle Marche, 60131 Ancona, Italy.

出版信息

Sensors (Basel). 2024 Dec 4;24(23):7768. doi: 10.3390/s24237768.

Abstract

The volitional control of powered assistive devices is commonly performed by mapping the electromyographic (EMG) activity of the lower limb to joints' angular kinematics, which are then used as the input for regulation. However, during walking, the ground reaction force (GRF) plays a central role in the modulation of the gait, providing dynamic stability and propulsion during the stance phase. Including this information within the control loop of prosthetic devices can improve the quality of the final output, providing more physiological walking dynamics that enhances the usability and patient comfort. In this work, we explored the feasibility of the estimation of the ground reaction force vertical component (VGRF) by using only the EMG activities of the thigh and shank muscles. We compared two deep learning models in three experiments that involved different muscular configurations. Overall, the outcomes show that the EMG signals could be leveraged to obtain a reliable estimation of the VGRF during walking, and the shank muscles alone represent a viable solution if a reduced recording setup is needed. On the other hand, the thigh muscles failed in providing performance enhancements, either when used alone or together with the shank muscles. The results outline the feasibility of including GRF information within an EMG-driven control scheme for prosthetic and assistive devices.

摘要

动力辅助设备的自主控制通常是通过将下肢的肌电图(EMG)活动映射到关节的角运动学来实现的,然后将其用作调节的输入。然而,在行走过程中,地面反作用力(GRF)在步态调节中起着核心作用,在支撑期提供动态稳定性和推进力。将此信息纳入假肢设备的控制回路可以提高最终输出的质量,提供更符合生理的行走动力学,从而提高可用性和患者舒适度。在这项工作中,我们探讨了仅使用大腿和小腿肌肉的EMG活动来估计地面反作用力垂直分量(VGRF)的可行性。我们在涉及不同肌肉配置的三个实验中比较了两种深度学习模型。总体而言,结果表明,EMG信号可用于在行走过程中获得VGRF的可靠估计,如果需要减少记录设置,仅小腿肌肉是一种可行的解决方案。另一方面,大腿肌肉无论是单独使用还是与小腿肌肉一起使用,都未能提高性能。结果概述了将GRF信息纳入假肢和辅助设备的EMG驱动控制方案的可行性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验