Suppr超能文献

促进中风患者临床步态分析应用的步骤:基于单2D RGB智能手机视频的步态分析系统的验证

Steps to Facilitate the Use of Clinical Gait Analysis in Stroke Patients: The Validation of a Single 2D RGB Smartphone Video-Based System for Gait Analysis.

作者信息

Barzyk Philipp, Boden Alina-Sophie, Howaldt Justin, Stürner Jana, Zimmermann Philip, Seebacher Daniel, Liepert Joachim, Stein Manuel, Gruber Markus, Schwenk Michael

机构信息

Human Performance Research Centre, Department of Sport Science, University of Konstanz, 78464 Konstanz, Germany.

Lurija Institute and Department of Neurological Rehabilitation, 78476 Allensbach, Germany.

出版信息

Sensors (Basel). 2024 Dec 6;24(23):7819. doi: 10.3390/s24237819.

Abstract

Clinical gait analysis plays a central role in the rehabilitation of stroke patients. However, practical and technical challenges limit their use in clinical settings. This study aimed to validate SMARTGAIT, a deep learning-based gait analysis system that addresses these limitations. Eight stroke patients took part in the study at the Human Performance Research Centre of the University of Konstanz. Gait measurements were taken using both the marker-based Vicon motion capture system and the single-smartphone-based SMARTGAIT system. We evaluated the agreement for knee, hip, and ankle joint angle kinematics in the frontal and sagittal plane and spatiotemporal gait parameters between the two systems. The results mostly demonstrated high levels of agreement between the two systems, with Pearson correlations of ≥0.79 for all lower body angle kinematics in the sagittal plane and correlations of ≥0.71 in the frontal plane. RMSE values were ≤4.6°. The intraclass correlation coefficients for all derived gait parameters showed good to excellent levels of agreement. SMARTGAIT is a promising tool for gait analysis in stroke, particularly for quantifying gait characteristics in the sagittal plane, which is very relevant for clinical gait analysis. However, further analyses are required to validate the use of SMARTGAIT in larger samples and its transferability to different types of pathological gait. In conclusion, a single smartphone recording (monocular 2D RGB camera) could make gait analysis more accessible in clinical settings, potentially simplifying the process and making it more feasible for therapists and doctors to use in their day-to-day practice.

摘要

临床步态分析在中风患者的康复中起着核心作用。然而,实际和技术方面的挑战限制了其在临床环境中的应用。本研究旨在验证SMARTGAIT,这是一种基于深度学习的步态分析系统,可解决这些局限性。八名中风患者参与了康斯坦茨大学人体性能研究中心的这项研究。使用基于标记的Vicon运动捕捉系统和基于单智能手机的SMARTGAIT系统进行步态测量。我们评估了两个系统在额面和矢状面的膝关节、髋关节和踝关节角度运动学以及时空步态参数的一致性。结果大多表明两个系统之间具有高度一致性,矢状面所有下肢角度运动学的皮尔逊相关系数≥0.79,额面相关系数≥0.71。均方根误差值≤4.6°。所有导出步态参数的组内相关系数显示出良好到极好的一致性水平。SMARTGAIT是中风步态分析的一个有前途的工具,特别是用于量化矢状面的步态特征,这与临床步态分析非常相关。然而,需要进一步分析以验证SMARTGAIT在更大样本中的应用及其对不同类型病理步态的可转移性。总之,单次智能手机记录(单目2D RGB相机)可以使步态分析在临床环境中更容易进行,有可能简化流程并使治疗师和医生在日常实践中使用起来更可行。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/13a0/11644854/1ad8cfad3a0b/sensors-24-07819-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验