Suppr超能文献

使用智能手机和机器学习对中风患者进行无监督步态评估。

Unsupervised Gait Assessments of Stroke Patients Using a Smartphone and Machine Learning.

作者信息

Sun Jingyao, Jia Tianyu, Lim Kiensiau, Mo Linhong, Ji Linhong, Li Chong

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2024 Jul;2024:1-5. doi: 10.1109/EMBC53108.2024.10782193.

Abstract

Home-based rehabilitation is a trend of post-stroke lower limb rehabilitation, aimed at a long-term and higher dose of therapy. Unsupervised gait assessments can help therapists to track patients' recovery progress and timely adjust rehabilitation interventions. This study aims to develop a smartphone-based wireless system for unsupervised gait assessments of stroke patients. The proposed system is based on smartphone motion sensors and uses machine learning approaches to interpret the gait features. We characterized the ability of the proposed system to extract gait features and detect abnormal gait patterns from 9 stroke patients and 10 healthy subjects. Results showed that the proposed system demonstrated comparable performance to the Vicon motion capture system for gait feature extraction (R = 0.99), and that extracted gait features could be used to detect patients' abnormal gait patterns (Average accuracy = 100%). Further analysis also demonstrated the correlation between gait features and the FMA-LE score for stroke patients. We conclude that the proposed smartphone-based system has sufficient potential for unsupervised gait assessments of stroke patients.

摘要

居家康复是中风后下肢康复的一种趋势,旨在实现长期且更高剂量的治疗。无监督步态评估有助于治疗师跟踪患者的恢复进展并及时调整康复干预措施。本研究旨在开发一种基于智能手机的无线系统,用于对中风患者进行无监督步态评估。所提出的系统基于智能手机运动传感器,并使用机器学习方法来解读步态特征。我们对所提出的系统从9名中风患者和10名健康受试者中提取步态特征和检测异常步态模式的能力进行了表征。结果表明,所提出的系统在步态特征提取方面表现出与Vicon运动捕捉系统相当的性能(R = 0.99),并且提取的步态特征可用于检测患者的异常步态模式(平均准确率 = 100%)。进一步分析还表明了步态特征与中风患者FMA-LE评分之间的相关性。我们得出结论,所提出的基于智能手机的系统在对中风患者进行无监督步态评估方面具有足够的潜力。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验