Suppr超能文献

人工智能驱动的无标记运动捕捉在中风幸存者时空步态分析中的有效性

Validity of AI-Driven Markerless Motion Capture for Spatiotemporal Gait Analysis in Stroke Survivors.

作者信息

Alammari Balsam J, Schoenwether Brandon, Ripic Zachary, Kirk-Sanchez Neva, Eltoukhy Moataz, Bishop Lauri

机构信息

Department of Physical Therapy, Miller School of Medicine, University of Miami, Coral Gables, FL 33146, USA.

Department of Kinesiology and Sport Sciences, School of Education & Human Development, University of Miami, Coral Gables, FL 33146, USA.

出版信息

Sensors (Basel). 2025 Aug 27;25(17):5315. doi: 10.3390/s25175315.

Abstract

Gait recovery after stroke is a primary goal of rehabilitation, therefore it is imperative to develop technologies that accurately identify gait impairments after stroke. Markerless motion capture (MMC) is an emerging technology that has been validated in healthy individuals. Our study aims to evaluate the validity of MMC against an instrumented walkway system (IWS) commonly used to evaluate gait in stroke survivors. Nineteen participants performed three comfortable speed (CS) and three fastest speed (FS) walking trials simultaneously recorded with IWS and MMC system, KinaTrax (HumanVersion 8.2, KinaTrax Inc., Boca Raton, FL, USA). Pearson's correlation coefficient and intraclass correlation coefficient (ICC (3,1), 95%CI) were used to evaluate the agreement and consistency between systems. Furthermore, Bland-Altman plots were used to estimate bias and Limits of Agreement (LoA). For both CS and FS, agreements between MMC and IWS were good to excellent in all parameters except for non-paretic single-limb support time (SLS), which revealed moderate agreement during CS. Additionally, stride width and paretic SLS showed poor agreement in both conditions. Biases eliminated systematic errors, with variable LoAs in all parameters during both conditions. Findings indicated high validity of MMC in measuring spatiotemporal gait parameters in stroke survivors. Further validity work is warranted.

摘要

中风后步态恢复是康复的主要目标,因此开发能够准确识别中风后步态障碍的技术势在必行。无标记运动捕捉(MMC)是一种新兴技术,已在健康个体中得到验证。我们的研究旨在评估MMC相对于常用于评估中风幸存者步态的仪器化步道系统(IWS)的有效性。19名参与者进行了三次舒适速度(CS)和三次最快速度(FS)的步行试验,同时用IWS和MMC系统KinaTrax(HumanVersion 8.2,KinaTrax公司,美国佛罗里达州博卡拉顿)进行记录。使用Pearson相关系数和组内相关系数(ICC(3,1),95%CI)来评估系统之间的一致性和一致性。此外,使用Bland-Altman图来估计偏差和一致性界限(LoA)。对于CS和FS,MMC和IWS之间在所有参数上的一致性都很好到极好,但非患侧单腿支撑时间(SLS)除外,在CS期间显示出中等一致性。此外,步幅宽度和患侧SLS在两种情况下的一致性都很差。偏差消除了系统误差,在两种情况下所有参数的LoA都有所不同。研究结果表明MMC在测量中风幸存者的时空步态参数方面具有很高的有效性。有必要进行进一步的有效性研究。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7a27/12431465/89d23c5d27c7/sensors-25-05315-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验