Wu Hao, Zhu Huichao, Zhang Jianwei, Yu Jun, Tang Zhenan, Yao Guanyu, Zhao Wenqing, Wu Guohui, Jin Xia
School of Control Science and Engineering, Dalian University of Technology, Dalian 116024, China.
Key Lab of Liaoning for Integrated Circuits and Medical Electronic Systems, Dalian University of Technology, Dalian 116024, China.
Sensors (Basel). 2024 Dec 8;24(23):7851. doi: 10.3390/s24237851.
In this study, we report a high-performance acetone gas sensor utilizing a bilayer structure composed of a ZnO nanorod top layer and a ZnFeO nanoparticle-decorated ZnO nanorod bottom layer. ZnO nanorods were synthesized via a water-bath method, after which the ZnFeO nanoparticle-decorated ZnO nanorods were prepared using a simple immersion and calcination method. SEM and TEM revealed the porous morphology of the samples and the formation of ZnO-ZnFeO heterojunctions. XPS analysis demonstrated an increase in oxygen vacancy content with the introduction of ZnFeO nanoparticles. Compared to pure ZnO nanorods, ZnFeO-decorated ZnO nanorods showed a 3.9-fold increase in response to 50 ppm acetone. Covering this layer with ZnO nanorods further increased the response by an additional 1.6 times, and simultaneously enhanced the selectivity to acetone. The top layer improves gas sensing performance by introducing heterojunctions with the bottom layer, partially blocking acetone gas at the bottom layer to facilitate a more complete reaction, and filtering ethanol interference.
在本研究中,我们报道了一种高性能丙酮气体传感器,它采用了由ZnO纳米棒顶层和ZnFeO纳米颗粒修饰的ZnO纳米棒底层组成的双层结构。通过水浴法合成ZnO纳米棒,之后使用简单的浸渍和煅烧方法制备ZnFeO纳米颗粒修饰的ZnO纳米棒。扫描电子显微镜(SEM)和透射电子显微镜(TEM)揭示了样品的多孔形态以及ZnO-ZnFeO异质结的形成。X射线光电子能谱(XPS)分析表明,随着ZnFeO纳米颗粒的引入,氧空位含量增加。与纯ZnO纳米棒相比,ZnFeO修饰的ZnO纳米棒对50 ppm丙酮的响应增加了3.9倍。用ZnO纳米棒覆盖该层进一步使响应增加了1.6倍,同时提高了对丙酮的选择性。顶层通过与底层引入异质结来改善气敏性能,部分阻挡底层的丙酮气体以促进更完全的反应,并过滤乙醇干扰。