Suppr超能文献

呼气分析在糖尿病诊断和监测中的应用:相关性、挑战与可能性。

Exhaled Breath Analysis for Diabetes Diagnosis and Monitoring: Relevance, Challenges and Possibilities.

机构信息

Department of Electronics and Electrical Communication Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, India.

School of Engineering, University of British Columbia, Kelowna, BC V1V 1V7, Canada.

出版信息

Biosensors (Basel). 2021 Nov 25;11(12):476. doi: 10.3390/bios11120476.

Abstract

With the global population prevalence of diabetes surpassing 463 million cases in 2019 and diabetes leading to millions of deaths each year, there is a critical need for feasible, rapid, and non-invasive methodologies for continuous blood glucose monitoring in contrast to the current procedures that are either invasive, complicated, or expensive. Breath analysis is a viable methodology for non-invasive diabetes management owing to its potential for multiple disease diagnoses, the nominal requirement of sample processing, and immense sample accessibility; however, the development of functional commercial sensors is challenging due to the low concentration of volatile organic compounds (VOCs) present in exhaled breath and the confounding factors influencing the exhaled breath profile. Given the complexity of the topic and the skyrocketing spread of diabetes, a multifarious review of exhaled breath analysis for diabetes monitoring is essential to track the technological progress in the field and comprehend the obstacles in developing a breath analysis-based diabetes management system. In this review, we consolidate the relevance of exhaled breath analysis through a critical assessment of current technologies and recent advancements in sensing methods to address the shortcomings associated with blood glucose monitoring. We provide a detailed assessment of the intricacies involved in the development of non-invasive diabetes monitoring devices. In addition, we spotlight the need to consider breath biomarker clusters as opposed to standalone biomarkers for the clinical applicability of exhaled breath monitoring. We present potential VOC clusters suitable for diabetes management and highlight the recent buildout of breath sensing methodologies, focusing on novel sensing materials and transduction mechanisms. Finally, we portray a multifaceted comparison of exhaled breath analysis for diabetes monitoring and highlight remaining challenges on the path to realizing breath analysis as a non-invasive healthcare approach.

摘要

2019 年全球糖尿病患者人数超过 4.63 亿,糖尿病每年导致数百万人死亡,因此需要可行、快速且非侵入性的连续血糖监测方法,而目前的方法要么具有侵入性、复杂或昂贵。由于呼气分析在多种疾病诊断方面具有潜力,对样品处理的要求较低,并且可以获得大量样本,因此是一种可行的非侵入性糖尿病管理方法;然而,由于呼出气体中挥发性有机化合物 (VOC) 的浓度较低,以及影响呼气特征的混杂因素,开发功能型商业传感器具有挑战性。鉴于该主题的复杂性和糖尿病发病率的飙升,对呼气分析在糖尿病监测中的应用进行多方面的综述对于跟踪该领域的技术进展和理解开发基于呼气分析的糖尿病管理系统的障碍至关重要。在这篇综述中,我们通过对当前技术和传感方法的最新进展进行批判性评估,强调了呼气分析在糖尿病监测中的相关性,以解决与血糖监测相关的缺点。我们详细评估了开发非侵入性糖尿病监测设备所涉及的复杂性。此外,我们强调需要考虑呼气生物标志物簇而不是孤立的生物标志物,以实现呼气监测的临床应用。我们提出了适合糖尿病管理的潜在 VOC 簇,并强调了最近对呼气传感方法的发展,重点是新型传感材料和转换机制。最后,我们对糖尿病监测的呼气分析进行了多方面的比较,并强调了实现呼气分析作为非侵入性医疗保健方法的道路上仍存在的挑战。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/170a/8699302/6e5d40269f0e/biosensors-11-00476-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验