Suppr超能文献

吸附氧离子和氧空位:它们在金属氧化物化学传感器中的浓度和分布,以及对灵敏度和传感机制的影响作用。

Adsorbed Oxygen Ions and Oxygen Vacancies: Their Concentration and Distribution in Metal Oxide Chemical Sensors and Influencing Role in Sensitivity and Sensing Mechanisms.

机构信息

Department of Materials Science, Institute for Experimental Condensed Matter Physics, Heinrich Heine University of Düsseldorf, 40225 Düsseldorf, Germany.

ASTRID2 Synchrotron Light Source, ISA, Centre for Storage Ring Facilities, Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, 8000C Aarhus, Denmark.

出版信息

Sensors (Basel). 2022 Dec 20;23(1):29. doi: 10.3390/s23010029.

Abstract

Oxidation reactions on semiconducting metal oxide (SMOs) surfaces have been extensively worked on in catalysis, fuel cells, and sensors. SMOs engage powerfully in energy-related applications such as batteries, supercapacitors, solid oxide fuel cells (SOFCs), and sensors. A deep understanding of SMO surface and oxygen interactions and defect engineering has become significant because all of the above-mentioned applications are based on the adsorption/absorption and consumption/transportation of adsorbed (physisorbed-chemisorbed) oxygen. More understanding of adsorbed oxygen and oxygen vacancies (VO•,VO••) is needed, as the former is the vital requirement for sensing chemical reactions, while the latter facilitates the replenishment of adsorbed oxygen ions on the surface. We determined the relation between sensor response (sensitivity) and the amounts of adsorbed oxygen ions (O2(ads)−, O(ads), −O2(ads)2−, O(ads)2−), water/hydroxide groups (H2O/OH−), oxygen vacancies (VO•, VO••), and ordinary lattice oxygen ions (Olattice2−) as a function of temperature. During hydrogen (H2) testing, the different oxidation states (W6+, W5+, and W4+) of WO3 were quantified and correlated with oxygen vacancy formation (VO•, VO••). We used a combined application of XPS, UPS, XPEEM-LEEM, and chemical, electrical, and sensory analysis for H2 sensing. The sensor response was extraordinarily high: 424 against H2 at a temperature of 250 °C was recorded and explained on the basis of defect engineering, including oxygen vacancies and chemisorbed oxygen ions and surface stoichiometry of WO3. We established a correlation between the H2 sensing mechanism of WO3, sensor signal magnitude, the amount of adsorbed oxygen ions, and sensor testing temperature. This paper also provides a review of the detection, quantification, and identification of different adsorbed oxygen species. The different surface and bulk-sensitive characterization techniques relevant to analyzing the SMOs-based sensor are tabulated, providing the sensor designer with the chemical, physical, and electronic information extracted from each technique.

摘要

半导体金属氧化物 (SMO) 表面的氧化反应在催化、燃料电池和传感器等领域得到了广泛的研究。SMO 在与能源相关的应用中具有强大的作用,如电池、超级电容器、固体氧化物燃料电池 (SOFC) 和传感器。深入了解 SMO 表面与氧的相互作用和缺陷工程变得非常重要,因为上述所有应用都基于吸附(物理吸附-化学吸附)氧的吸附/吸收和消耗/传输。需要更多地了解吸附氧和氧空位(VO•、VO••),因为前者是感测化学反应的重要要求,而后者有利于表面吸附氧离子的补充。我们确定了传感器响应(灵敏度)与吸附氧离子(O2(ads)−、O(ads)、−O2(ads)2−、O(ads)2−)、水/氢氧根(H2O/OH−)、氧空位(VO•、VO••)和普通晶格氧离子(Olattice2−)的数量之间的关系,作为温度的函数。在氢气(H2)测试过程中,定量了 WO3 的不同氧化态(W6+、W5+ 和 W4+),并将其与氧空位形成(VO•、VO••)相关联。我们结合使用 XPS、UPS、XPEEM-LEEM 以及化学、电气和感应分析来进行 H2 感测。传感器的响应非常高:在 250°C 的温度下,记录到了 424 对 H2 的响应,并基于缺陷工程进行了解释,包括氧空位和化学吸附氧离子以及 WO3 的表面化学计量。我们建立了 WO3 的 H2 感测机制、传感器信号幅度、吸附氧离子的数量以及传感器测试温度之间的相关性。本文还提供了对不同吸附氧物种的检测、定量和识别的综述。列出了与分析基于 SMO 的传感器相关的表面和体敏特征技术,为传感器设计人员提供了从每种技术中提取的化学、物理和电子信息。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9ae5/9824271/0545d4efccf3/sensors-23-00029-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验