Suppr超能文献

一种基于卷积神经网络的双路径计算鬼成像方法。

A Dual-Path Computational Ghost Imaging Method Based on Convolutional Neural Networks.

作者信息

Wang Hexiao, Wu Jianan, Wang Mingcong, Xia Yu

机构信息

College of Computer Science and Technology, Changchun University, Changchun 130022, China.

Quantum Cryptography and Intelligent Network Security Laboratory, Changchun University, Changchun 130022, China.

出版信息

Sensors (Basel). 2024 Dec 9;24(23):7869. doi: 10.3390/s24237869.

Abstract

Ghost imaging is a technique for indirectly reconstructing images by utilizing the second-order or higher-order correlation properties of the light field, which exhibits a robust ability to resist interference. On the premise of ensuring the quality of the image, effectively broadening the imaging range can improve the practicality of the technology. In this paper, a dual-path computational ghost imaging method based on convolutional neural networks is proposed. By using the dual-path detection structure, a wider range of target image information can be obtained, and the imaging range can be expanded. In this paper, for the first time, we try to use the two-channel probe as the input of the convolutional neural network and successfully reconstruct the target image. In addition, the network model incorporates a self-attention mechanism, which can dynamically adjust the network focus and further improve the reconstruction efficiency. Simulation results show that the method is effective. The method in this paper can effectively broaden the imaging range and provide a new idea for the practical application of ghost imaging technology.

摘要

鬼成像技术是一种利用光场的二阶或高阶关联特性间接重建图像的技术,具有很强的抗干扰能力。在保证图像质量的前提下,有效拓宽成像范围可以提高该技术的实用性。本文提出了一种基于卷积神经网络的双路径计算鬼成像方法。通过采用双路径检测结构,可以获取更广泛的目标图像信息,从而扩大成像范围。本文首次尝试将双通道探测器作为卷积神经网络的输入,并成功重建了目标图像。此外,网络模型引入了自注意力机制,能够动态调整网络焦点,进一步提高重建效率。仿真结果表明该方法是有效的。本文提出的方法能够有效拓宽成像范围,为鬼成像技术的实际应用提供了新思路。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cb32/11644949/01c4e064d3a4/sensors-24-07869-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验