Suppr超能文献

基于仿真数据训练的深度学习的彩色计算鬼成像。

Color computational ghost imaging by deep learning based on simulation data training.

出版信息

Appl Opt. 2022 Feb 1;61(4):1022-1029. doi: 10.1364/AO.447761.

Abstract

We present a new color computational ghost imaging strategy using a sole single-pixel detector and training by simulated dataset, which can eliminate the actual workload of acquiring experimental training datasets and reduce the sampling times for imaging experiments. First, the relative responsibility of the color computational ghost imaging device to different color channels is experimentally detected, and then enough data sets are simulated for training the neural network based on the response value. Because the simulation process is much simpler than the actual experiment, and the training set can be almost unlimited, the trained network model has good generalization. In the experiment with a sampling rate of only 4.1%, the trained neural network model can still recover the image information from the blurry ghost image, correct the color distortion of the image, and get a better reconstruction result. In addition, with the increase in the sampling rate, the details and color characteristics of the reconstruction result become better and better. Feasibility and stability of the proposed method have been verified by the reconstruction results of the trained network model on the color objects of different complexities.

摘要

我们提出了一种新的彩色计算鬼成像策略,使用单一的单像素探测器和模拟数据集进行训练,这可以消除获取实验训练数据集的实际工作量,并减少成像实验的采样次数。首先,通过实验检测彩色计算鬼成像设备对不同颜色通道的相对责任,然后根据响应值模拟足够的数据集来训练神经网络。由于模拟过程比实际实验简单得多,并且训练集几乎可以无限增加,因此训练后的网络模型具有良好的泛化能力。在采样率仅为 4.1%的实验中,经过训练的神经网络模型仍然可以从模糊的鬼像中恢复图像信息,纠正图像的颜色失真,并获得更好的重建结果。此外,随着采样率的增加,重建结果的细节和颜色特征变得越来越好。通过对不同复杂程度的彩色物体进行训练网络模型的重建结果,验证了该方法的可行性和稳定性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验