Suppr超能文献

推进甲状腺护理:一个具有可解释人工智能和混合机器学习技术的准确可靠诊断系统。

Advancing thyroid care: An accurate trustworthy diagnostics system with interpretable AI and hybrid machine learning techniques.

作者信息

Sutradhar Ananda, Akter Sharmin, Shamrat F M Javed Mehedi, Ghosh Pronab, Zhou Xujuan, Idris Mohd Yamani Idna Bin, Ahmed Kawsar, Moni Mohammad Ali

机构信息

Department of Computer Science and Engineering, Daffodil International University, Dhaka, Bangladesh.

Department of Computer System and Technology, Universiti Malaya, Kuala Lumpur, 50603, Malaysia.

出版信息

Heliyon. 2024 Aug 20;10(17):e36556. doi: 10.1016/j.heliyon.2024.e36556. eCollection 2024 Sep 15.

Abstract

The worldwide prevalence of thyroid disease is on the rise, representing a chronic condition that significantly impacts global mortality rates. Machine learning (ML) approaches have demonstrated potential superiority in mitigating the occurrence of this disease by facilitating early detection and treatment. However, there is a growing demand among stakeholders and patients for reliable and credible explanations of the generated predictions in sensitive medical domains. Hence, we propose an interpretable thyroid classification model to illustrate outcome explanations and investigate the contribution of predictive features by utilizing explainable AI. Two real-time thyroid datasets underwent various preprocessing approaches, addressing data imbalance issues using the Synthetic Minority Over-sampling Technique with Edited Nearest Neighbors (SMOTE-ENN). Subsequently, two hybrid classifiers, namely RDKVT and RDKST, were introduced to train the processed and selected features from Univariate and Information Gain feature selection techniques. Following the training phase, the Shapley Additive Explanation (SHAP) was applied to identify the influential characteristics and corresponding values contributing to the outcomes. The conducted experiments ultimately concluded that the presented RDKST classifier achieved the highest performance, demonstrating an accuracy of 98.98 % when trained on Information Gain selected features. Notably, the features T3 (triiodothyronine), TT4 (total thyroxine), TSH (thyroid-stimulating hormone), FTI (free thyroxine index), and T3_measured significantly influenced the generated outcomes. By balancing classification accuracy and outcome explanation ability, this study aims to enhance the clinical decision-making process and improve patient care.

摘要

甲状腺疾病的全球患病率正在上升,这是一种慢性病,对全球死亡率有重大影响。机器学习(ML)方法已显示出通过促进早期检测和治疗来降低这种疾病发生率的潜在优势。然而,利益相关者和患者对敏感医学领域中生成预测的可靠和可信解释的需求日益增长。因此,我们提出了一种可解释的甲状腺分类模型,以说明结果解释,并通过利用可解释人工智能来研究预测特征的贡献。两个实时甲状腺数据集采用了各种预处理方法,使用合成少数过采样技术与编辑最近邻(SMOTE-ENN)来解决数据不平衡问题。随后,引入了两个混合分类器,即RDKVT和RDKST,以训练从单变量和信息增益特征选择技术中处理和选择的特征。在训练阶段之后,应用Shapley加法解释(SHAP)来识别对结果有影响的特征及其相应值。进行的实验最终得出结论,所提出的RDKST分类器性能最高,在基于信息增益选择的特征上进行训练时,准确率达到98.98%。值得注意的是,特征T3(三碘甲状腺原氨酸)、TT4(总甲状腺素)、TSH(促甲状腺激素)、FTI(游离甲状腺素指数)和T3_measured对生成的结果有显著影响。通过平衡分类准确率和结果解释能力,本研究旨在加强临床决策过程并改善患者护理。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/490c/11646756/ffad123056c2/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验