Suppr超能文献

哨兵-1合成孔径雷达(SAR)和哨兵-2 RGB-NDVI图像数据集。

Dataset of Sentinel-1 SAR and Sentinel-2 RGB-NDVI imagery.

作者信息

Cardona-Mesa Ahmed Alejandro, Vásquez-Salazar Rubén Darío, Gómez Luis, Travieso-González Carlos M, Garavito-González Andrés F, Vásquez-Cano Esteban, Díaz-Paz Jean Pierre

机构信息

Faculty of Engineering, Politécnico Colombiano Jaime Isaza Cadavid, 48th Av, 7-151, Medellín, Colombia.

Electronic Engineering and Automatic Control Department, IUCES, Universidad de Las Palmas de Gran Canaria, Juan de Quesada 30, Las Palmas de Gran Canaria, Spain.

出版信息

Data Brief. 2024 Nov 20;57:111160. doi: 10.1016/j.dib.2024.111160. eCollection 2024 Dec.

Abstract

This article presents a comprehensive dataset combining Synthetic Aperture Radar (SAR) imagery from the Sentinel-1 mission with optical imagery, including RGB and Normalized Difference Vegetation Index (NDVI), from the Sentinel-2 mission. The dataset consists of 8800 images, organized into four folders-SAR_VV, SAR_VH, RGB, and NDVI-each containing 2200 images with dimensions of 512 × 512 pixels. These images were collected from various global locations using random geographic coordinates and strict criteria for cloud cover, snow presence, and water percentage, ensuring high-quality and diverse data. The primary motivation for creating this dataset is to address the limitations of optical sensors, which are often hindered by cloud cover and atmospheric conditions. By integrating SAR data, which is unaffected by these factors, the dataset offers a robust tool for a wide range of applications, including land cover classification, vegetation monitoring, and environmental change detection. The dataset is particularly valuable for training machine learning models that require multimodal inputs, such as translating SAR images to optical imagery or enhancing the quality of noisy data. Additionally, the structure of the dataset and the preprocessing steps applied make it readily usable for various research purposes. The SAR images are processed to Level-1 Ground Range Detected (GRD) format, including radiometric calibration and terrain correction, while the optical images are filtered to ensure minimal cloud interference.

摘要

本文展示了一个综合数据集,该数据集将哨兵1号任务的合成孔径雷达(SAR)图像与哨兵2号任务的光学图像(包括RGB和归一化植被指数(NDVI))相结合。该数据集由8800张图像组成,分为四个文件夹——SAR_VV、SAR_VH、RGB和NDVI,每个文件夹包含2200张尺寸为512×512像素的图像。这些图像是使用随机地理坐标从全球各地收集的,并针对云量、积雪情况和水体比例制定了严格标准,以确保数据的高质量和多样性。创建这个数据集的主要动机是解决光学传感器的局限性,光学传感器常常受到云层覆盖和大气条件的影响。通过整合不受这些因素影响的SAR数据,该数据集为包括土地覆盖分类、植被监测和环境变化检测在内的广泛应用提供了一个强大的工具。该数据集对于训练需要多模态输入的机器学习模型特别有价值,比如将SAR图像转换为光学图像或提高噪声数据的质量。此外,数据集的结构和所应用的预处理步骤使其很容易用于各种研究目的。SAR图像被处理为1级地距检测(GRD)格式,包括辐射校准和地形校正,而光学图像经过滤波以确保云的干扰最小。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b847/11648187/7e42a25f185d/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验