文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

在识别儿童焦虑复杂病例方面,大型语言模型的表现优于全科医生。

Large language models outperform general practitioners in identifying complex cases of childhood anxiety.

作者信息

Levkovich Inbar, Rabin Eyal, Brann Michal, Elyoseph Zohar

机构信息

The Faculty of Education, Tel Hai College, Upper Galilee, Israel.

Department of Psychology and Education, The Open University of Israel, Ra'anana, Israel.

出版信息

Digit Health. 2024 Dec 15;10:20552076241294182. doi: 10.1177/20552076241294182. eCollection 2024 Jan-Dec.


DOI:10.1177/20552076241294182
PMID:39687523
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11648044/
Abstract

OBJECTIVE: Anxiety is prevalent in childhood but often remains undiagnosed due to its physical manifestations and significant comorbidity. Despite the availability of effective treatments, including medication and psychotherapy, research indicates that physicians struggle to identify childhood anxiety, particularly in complex and challenging cases. This study aims to explore the potential effectiveness of artificial intelligence (AI) language models in diagnosing childhood anxiety compared to general practitioners (GPs). METHODS: During February 2024, we evaluated the ability of several large language models (LLMs; ChatGPT-3.5 and ChatGPT-4, Claude.AI, Gemini) to identify cases childhood anxiety disorder, compared with reports of GPs. RESULTS: AI tools exhibited significantly higher rates of identifying anxiety than GPs. Each AI tool accurately identified anxiety in at least one case: Claude.AI and Gemini identified at least four cases, ChatGPT-3 identified three cases, and ChatGPT-4 identified one or two cases. Additionally, 40% of GPs preferred to manage the cases within their practice, often with the help of a practice nurse, whereas AI tools generally recommended referral to specialized mental or somatic health services. CONCLUSION: Preliminary findings indicate that LLMs, specifically Claude.AI and Gemini, exhibit notable diagnostic capabilities in identifying child anxiety, demonstrating a comparative advantage over GPs.

摘要

目的:焦虑症在儿童中很常见,但由于其身体表现和显著的共病情况,往往仍未得到诊断。尽管有包括药物治疗和心理治疗在内的有效治疗方法,但研究表明,医生在识别儿童焦虑症方面存在困难,尤其是在复杂且具有挑战性的病例中。本研究旨在探讨与全科医生(GP)相比,人工智能(AI)语言模型在诊断儿童焦虑症方面的潜在有效性。 方法:2024年2月期间,我们评估了几个大语言模型(LLM;ChatGPT-3.5、ChatGPT-4、Claude.AI、Gemini)识别儿童焦虑症病例的能力,并与全科医生的报告进行了比较。 结果:人工智能工具识别焦虑症的准确率显著高于全科医生。每个人工智能工具至少在一个病例中准确识别出了焦虑症:Claude.AI和Gemini识别出至少四个病例,ChatGPT-3识别出三个病例,ChatGPT-4识别出一两个病例。此外,40%的全科医生倾向于在其诊所内处理这些病例,通常在实习护士的帮助下进行,而人工智能工具通常建议转诊至专门的精神或躯体健康服务机构。 结论:初步研究结果表明,大语言模型,特别是Claude.AI和Gemini,在识别儿童焦虑症方面具有显著的诊断能力,显示出相对于全科医生的比较优势。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d6a6/11648044/8b5d5290945d/10.1177_20552076241294182-fig3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d6a6/11648044/2033278c01b7/10.1177_20552076241294182-fig1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d6a6/11648044/cd0c96687757/10.1177_20552076241294182-fig2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d6a6/11648044/8b5d5290945d/10.1177_20552076241294182-fig3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d6a6/11648044/2033278c01b7/10.1177_20552076241294182-fig1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d6a6/11648044/cd0c96687757/10.1177_20552076241294182-fig2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d6a6/11648044/8b5d5290945d/10.1177_20552076241294182-fig3.jpg

相似文献

[1]
Large language models outperform general practitioners in identifying complex cases of childhood anxiety.

Digit Health. 2024-12-15

[2]
Assessing prognosis in depression: comparing perspectives of AI models, mental health professionals and the general public.

Fam Med Community Health. 2024-1-9

[3]
Evaluating text and visual diagnostic capabilities of large language models on questions related to the Breast Imaging Reporting and Data System Atlas 5 edition.

Diagn Interv Radiol. 2025-3-3

[4]
GP or ChatGPT? Ability of large language models (LLMs) to support general practitioners when prescribing antibiotics.

J Antimicrob Chemother. 2025-5-2

[5]
Comparing the Perspectives of Generative AI, Mental Health Experts, and the General Public on Schizophrenia Recovery: Case Vignette Study.

JMIR Ment Health. 2024-3-18

[6]
Benchmarking the performance of large language models in uveitis: a comparative analysis of ChatGPT-3.5, ChatGPT-4.0, Google Gemini, and Anthropic Claude3.

Eye (Lond). 2025-4

[7]
From open-ended to multiple-choice: evaluating diagnostic performance and consistency of ChatGPT, Google Gemini and Claude AI.

Wiad Lek. 2024

[8]
Gemini AI vs. ChatGPT: A comprehensive examination alongside ophthalmology residents in medical knowledge.

Graefes Arch Clin Exp Ophthalmol. 2025-2

[9]
Evaluating Large Language Models in Dental Anesthesiology: A Comparative Analysis of ChatGPT-4, Claude 3 Opus, and Gemini 1.0 on the Japanese Dental Society of Anesthesiology Board Certification Exam.

Cureus. 2024-9-27

[10]
Performance of three artificial intelligence (AI)-based large language models in standardized testing; implications for AI-assisted dental education.

J Periodontal Res. 2025-2

引用本文的文献

[1]
Large Language Models in Medical Diagnostics: Scoping Review With Bibliometric Analysis.

J Med Internet Res. 2025-6-9

[2]
Evaluating Diagnostic Accuracy and Treatment Efficacy in Mental Health: A Comparative Analysis of Large Language Model Tools and Mental Health Professionals.

Eur J Investig Health Psychol Educ. 2025-1-18

本文引用的文献

[1]
AI in medical diagnosis: AI prediction & human judgment.

Artif Intell Med. 2024-3

[2]
Potential applications and implications of large language models in primary care.

Fam Med Community Health. 2024-1-30

[3]
Health Care Professionals' Views on the Use of Passive Sensing, AI, and Machine Learning in Mental Health Care: Systematic Review With Meta-Synthesis.

JMIR Ment Health. 2024-1-23

[4]
Beyond Personhood: Ethical Paradigms in the Generative Artificial Intelligence Era.

Am J Bioeth. 2024-1

[5]
Assessing prognosis in depression: comparing perspectives of AI models, mental health professionals and the general public.

Fam Med Community Health. 2024-1-9

[6]
Identifying depression and its determinants upon initiating treatment: ChatGPT versus primary care physicians.

Fam Med Community Health. 2023-9

[7]
Revolutionizing healthcare: the role of artificial intelligence in clinical practice.

BMC Med Educ. 2023-9-22

[8]
Suicide Risk Assessments Through the Eyes of ChatGPT-3.5 Versus ChatGPT-4: Vignette Study.

JMIR Ment Health. 2023-9-20

[9]
The plasticity of ChatGPT's mentalizing abilities: personalization for personality structures.

Front Psychiatry. 2023-9-1

[10]
Temporal patterns in the recorded annual incidence of common mental disorders over two decades in the United Kingdom: a primary care cohort study.

Psychol Med. 2024-3

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索