Suppr超能文献

使用自动化、准确且用户友好的网络工具PredictONCO对精准肿瘤学中的突变进行分析。

Analysis of mutations in precision oncology using the automated, accurate, and user-friendly web tool PredictONCO.

作者信息

Khan Rayyan Tariq, Pokorna Petra, Stourac Jan, Borko Simeon, Dobias Adam, Planas-Iglesias Joan, Mazurenko Stanislav, Arefiev Ihor, Pinto Gaspar, Szotkowska Veronika, Sterba Jaroslav, Damborsky Jiri, Slaby Ondrej, Bednar David

机构信息

Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Brno, Czech Republic.

International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czech Republic.

出版信息

Comput Struct Biotechnol J. 2024 Nov 14;24:734-738. doi: 10.1016/j.csbj.2024.11.026. eCollection 2024 Dec.

Abstract

Next-generation sequencing technology has created many new opportunities for clinical diagnostics, but it faces the challenge of functional annotation of identified mutations. Various algorithms have been developed to predict the impact of missense variants that influence oncogenic drivers. However, computational pipelines that handle biological data must integrate multiple software tools, which can add complexity and hinder non-specialist users from accessing the pipeline. Here, we have developed an online user-friendly web server tool PredictONCO that is fully automated and has a low barrier to access. The tool models the structure of the mutant protein in the first step. Next, it calculates the protein stability change, pocket level information, evolutionary conservation, and changes in ionisation of catalytic amino acid residues, and uses them as the features in the machine-learning predictor. The XGBoost-based predictor was validated on an independent subset of held-out data, demonstrating areas under the receiver operating characteristic curve (ROC) of 0.97 and 0.94, and the average precision from the precision-recall curve of 0.99 and 0.94 for structure-based and sequence-based predictions, respectively. Finally, PredictONCO calculates the docking results of small molecules approved by regulatory authorities. We demonstrate the applicability of the tool by presenting its usage for variants in two cancer-associated proteins, cellular tumour antigen p53 and fibroblast growth factor receptor FGFR1. Our free web tool will assist with the interpretation of data from next-generation sequencing and navigate treatment strategies in clinical oncology: https://loschmidt.chemi.muni.cz/predictonco/.

摘要

下一代测序技术为临床诊断创造了许多新机会,但它面临着对已识别突变进行功能注释的挑战。已经开发了各种算法来预测影响致癌驱动因素的错义变体的影响。然而,处理生物数据的计算流程必须整合多个软件工具,这可能会增加复杂性,并阻碍非专业用户使用该流程。在这里,我们开发了一个在线用户友好的网络服务器工具PredictONCO,它是完全自动化的,且使用门槛较低。该工具第一步对突变蛋白的结构进行建模。接下来,它计算蛋白质稳定性变化、口袋水平信息、进化保守性以及催化氨基酸残基的电离变化,并将它们用作机器学习预测器的特征。基于XGBoost的预测器在独立的留出数据子集上进行了验证,基于结构的预测和基于序列的预测在接收者操作特征曲线(ROC)下的面积分别为0.97和0.94,精确召回曲线的平均精度分别为0.99和0.94。最后,PredictONCO计算监管机构批准的小分子的对接结果。我们通过展示该工具在两种癌症相关蛋白——细胞肿瘤抗原p53和成纤维细胞生长因子受体FGFR1变体中的应用,证明了该工具的适用性。我们的免费网络工具将有助于解释下一代测序数据,并指导临床肿瘤学的治疗策略:https://loschmidt.chemi.muni.cz/predictonco/

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1d59/11647622/d8dd909787dc/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验