Suppr超能文献

结合剂量学和机器学习方法预测儿童癌症幸存者的严重心脏疾病:法国儿童癌症幸存者研究

Combining dosiomics and machine learning methods for predicting severe cardiac diseases in childhood cancer survivors: the French Childhood Cancer Survivor Study.

作者信息

Bentriou Mahmoud, Letort Véronique, Chounta Stefania, Fresneau Brice, Do Duyen, Haddy Nadia, Diallo Ibrahima, Journy Neige, Zidane Monia, Charrier Thibaud, Aba Naila, Ducos Claire, Zossou Vincent S, de Vathaire Florent, Allodji Rodrigue S, Lemler Sarah

机构信息

Université Paris-Saclay, CentraleSupélec, Mathématiques et Informatique pour la Complexité et les Systèmes, Gif-sur-Yvette, France.

Université Paris-Saclay, Université Versailles - Saint Quentin en Yvelines (UVSQ), Institut national de la santé et de la recherche médicale (INSERM), CESP-U1018, Villejuif, France.

出版信息

Front Oncol. 2024 Dec 2;14:1241221. doi: 10.3389/fonc.2024.1241221. eCollection 2024.

Abstract

BACKGROUND

Cardiac disease (CD) is a primary long-term diagnosed pathology among childhood cancer survivors. Dosiomics (radiomics extracted from the dose distribution) have received attention in the past few years to assess better the induced risk of radiotherapy (RT) than standard dosimetric features such as dose-volume indicators. Hence, using the spatial information contained in the dosiomics features with machine learning methods may improve the prediction of CD.

METHODS

We considered the 7670 5-year survivors of the French Childhood Cancer Survivors Study (FCCSS). Dose-volume and dosiomics features are extracted from the radiation dose distribution of 3943 patients treated with RT. Survival analysis is performed considering several groups of features and several models [Cox Proportional Hazard with Lasso penalty, Cox with Bootstrap Lasso selection, Random Survival Forests (RSF)]. We establish the performance of dosiomics compared to baseline models by estimating C-index and Integrated Brier Score (IBS) metrics with 5-fold stratified cross-validation and compare their time-dependent error curves.

RESULTS

An RSF model adjusted on the first-order dosiomics predictors extracted from the whole heart performed best regarding the C-index (0.792 ± 0.049), and an RSF model adjusted on the first-order dosiomics predictors extracted from the heart's subparts performed best regarding the IBS (0.069 ± 0.05). However, the difference is not statistically significant with the standard models (C-index of Cox PH adjusted on dose-volume indicators: 0.791 ± 0.044; IBS of Cox PH adjusted on the mean dose to the heart: 0.074 ± 0.056).

CONCLUSION

In this study, dosiomics models have slightly better performance metrics but they do not outperform the standard models significantly. Quantiles of the dose distribution may contain enough information to estimate the risk of late radio-induced high-grade CD in childhood cancer survivors.

摘要

背景

心脏病(CD)是儿童癌症幸存者中长期诊断出的主要病理疾病。剂量组学(从剂量分布中提取的影像组学)在过去几年中受到关注,与剂量体积指标等标准剂量学特征相比,它能更好地评估放疗(RT)诱发的风险。因此,将剂量组学特征中包含的空间信息与机器学习方法相结合,可能会改善对心脏病的预测。

方法

我们纳入了法国儿童癌症幸存者研究(FCCSS)中的7670名5年幸存者。从3943名接受放疗的患者的辐射剂量分布中提取剂量体积和剂量组学特征。考虑几组特征和几种模型[带Lasso惩罚的Cox比例风险模型、带Bootstrap Lasso选择的Cox模型、随机生存森林(RSF)]进行生存分析。通过5折分层交叉验证估计C指数和综合Brier评分(IBS)指标,我们确定了与基线模型相比剂量组学的性能,并比较了它们的时间依赖性误差曲线。

结果

在从全心提取的一阶剂量组学预测因子上进行调整的RSF模型在C指数方面表现最佳(0.792±0.049),在从心脏各部分提取的一阶剂量组学预测因子上进行调整的RSF模型在IBS方面表现最佳(0.069±0.05)。然而,与标准模型相比,差异无统计学意义(在剂量体积指标上调整的Cox PH的C指数:0.791±0.044;在心脏平均剂量上调整的Cox PH的IBS:0.074±0.056)。

结论

在本研究中,剂量组学模型的性能指标略好,但并未显著优于标准模型。剂量分布的分位数可能包含足够的信息来估计儿童癌症幸存者晚期放射性诱发的高级别心脏病风险。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d4b8/11647004/72cc4a965499/fonc-14-1241221-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验