Suppr超能文献

用于高保真机器学习原子间势的数据高效多保真训练

Data-Efficient Multifidelity Training for High-Fidelity Machine Learning Interatomic Potentials.

作者信息

Kim Jaesun, Kim Jisu, Kim Jaehoon, Lee Jiho, Park Yutack, Kang Youngho, Han Seungwu

机构信息

Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Korea.

Department of Materials Science and Engineering, Incheon National University, Incheon 22012, Korea.

出版信息

J Am Chem Soc. 2025 Jan 8;147(1):1042-1054. doi: 10.1021/jacs.4c14455. Epub 2024 Dec 17.

Abstract

Machine learning interatomic potentials (MLIPs) are used to estimate potential energy surfaces (PES) from calculations, providing near-quantum-level accuracy with reduced computational costs. However, the high cost of assembling high-fidelity databases hampers the application of MLIPs to systems that require high chemical accuracy. Utilizing an equivariant graph neural network, we present an MLIP framework that trains on multifidelity databases simultaneously. This approach enables the accurate learning of high-fidelity PES with minimal high-fidelity data. Employing the generalized gradient approximation (GGA) and meta-GGA as low- and high-fidelity approaches, respectively, we tested this framework on the LiPSCl and InGaN systems. The results show that using a high-fidelity training set with a size approximately 10% of the low-fidelity set, the multifidelity training framework achieves excellent accuracy, with Li-ion conductivity predictions within 10% error and InGaN mixing energy showing an of 0.98 compared to the reference high-fidelity MLIP results. It indicates that geometric and compositional spaces not covered by the high-fidelity meta-GGA database can be effectively inferred from low-fidelity GGA data, thus enhancing accuracy and molecular dynamics stability. We also developed a general-purpose MLIP that utilizes both GGA and meta-GGA data from the Materials Project, significantly enhancing MLIP performance for high-accuracy tasks such as predicting energies above hull for crystals in general. Furthermore, we demonstrate that the present multifidelity learning is more effective than transfer learning or Δ-learning and that it can also be applied to learn higher-fidelity up to the coupled-cluster level. We believe this methodology holds promise for creating highly accurate bespoke or universal MLIPs by effectively expanding the high-fidelity data set.

摘要

机器学习原子间势(MLIPs)用于通过计算估计势能面(PES),以降低的计算成本提供接近量子水平的精度。然而,组装高保真数据库的高成本阻碍了MLIPs在需要高化学精度的系统中的应用。利用等变图神经网络,我们提出了一个同时在多保真数据库上进行训练的MLIP框架。这种方法能够以最少的高保真数据准确学习高保真PES。分别采用广义梯度近似(GGA)和元GGA作为低保真和高保真方法,我们在LiPSCl和InGaN系统上测试了这个框架。结果表明,使用大小约为低保真集10%的高保真训练集,多保真训练框架实现了优异的精度,锂离子电导率预测误差在10%以内,InGaN混合能与参考高保真MLIP结果相比显示出0.98的相关性。这表明高保真元GGA数据库未覆盖的几何和成分空间可以从低保真GGA数据中有效推断出来,从而提高精度和分子动力学稳定性。我们还开发了一种通用的MLIP,它利用了来自材料项目的GGA和元GGA数据,显著提高了MLIP在诸如预测一般晶体的凸包以上能量等高精度任务中的性能。此外,我们证明了当前的多保真学习比迁移学习或Δ学习更有效,并且它还可以应用于学习高达耦合簇水平的更高保真度。我们相信这种方法有望通过有效扩展高保真数据集来创建高度准确的定制或通用MLIPs。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验