Suppr超能文献

相似文献

1
Automated and Efficient Sampling of Chemical Reaction Space.
Adv Sci (Weinh). 2025 Mar;12(9):e2409009. doi: 10.1002/advs.202409009. Epub 2025 Jan 13.
2
ArcaNN: automated enhanced sampling generation of training sets for chemically reactive machine learning interatomic potentials.
Digit Discov. 2024 Oct 30;4(1):54-72. doi: 10.1039/d4dd00209a. eCollection 2025 Jan 15.
3
Data-Efficient Multifidelity Training for High-Fidelity Machine Learning Interatomic Potentials.
J Am Chem Soc. 2025 Jan 8;147(1):1042-1054. doi: 10.1021/jacs.4c14455. Epub 2024 Dec 17.
5
Benchmarking structural evolution methods for training of machine learned interatomic potentials.
J Phys Condens Matter. 2022 Jul 22;34(38). doi: 10.1088/1361-648X/ac7f73.
6
Machine learning interatomic potential: Bridge the gap between small-scale models and realistic device-scale simulations.
iScience. 2024 Apr 4;27(5):109673. doi: 10.1016/j.isci.2024.109673. eCollection 2024 May 17.
7
Data Generation for Machine Learning Interatomic Potentials and Beyond.
Chem Rev. 2024 Dec 25;124(24):13681-13714. doi: 10.1021/acs.chemrev.4c00572. Epub 2024 Nov 21.
9
Improving Bond Dissociations of Reactive Machine Learning Potentials through Physics-Constrained Data Augmentation.
J Chem Inf Model. 2025 Feb 10;65(3):1198-1210. doi: 10.1021/acs.jcim.4c01847. Epub 2025 Jan 28.
10
Machine Learning Interatomic Potentials for Heterogeneous Catalysis.
Chemistry. 2024 Oct 28;30(60):e202401148. doi: 10.1002/chem.202401148. Epub 2024 Oct 16.

本文引用的文献

1
Neural network potentials for chemistry: concepts, applications and prospects.
Digit Discov. 2022 Dec 21;2(1):28-58. doi: 10.1039/d2dd00102k. eCollection 2023 Feb 13.
3
Transition1x - a dataset for building generalizable reactive machine learning potentials.
Sci Data. 2022 Dec 24;9(1):779. doi: 10.1038/s41597-022-01870-w.
4
Best-Practice DFT Protocols for Basic Molecular Computational Chemistry.
Angew Chem Int Ed Engl. 2022 Oct 17;61(42):e202205735. doi: 10.1002/anie.202205735. Epub 2022 Sep 14.
5
Reaction dynamics of Diels-Alder reactions from machine learned potentials.
Phys Chem Chem Phys. 2022 Sep 14;24(35):20820-20827. doi: 10.1039/d2cp02978b.
6
The MD17 datasets from the perspective of datasets for gas-phase "small" molecule potentials.
J Chem Phys. 2022 Jun 28;156(24):240901. doi: 10.1063/5.0089200.
7
QMugs, quantum mechanical properties of drug-like molecules.
Sci Data. 2022 Jun 7;9(1):273. doi: 10.1038/s41597-022-01390-7.
8
Quantum Chemical Calculations to Trace Back Reaction Paths for the Prediction of Reactants.
JACS Au. 2022 Apr 22;2(5):1181-1188. doi: 10.1021/jacsau.2c00157. eCollection 2022 May 23.
9
E(3)-equivariant graph neural networks for data-efficient and accurate interatomic potentials.
Nat Commun. 2022 May 4;13(1):2453. doi: 10.1038/s41467-022-29939-5.
10
Neural Network Potentials: A Concise Overview of Methods.
Annu Rev Phys Chem. 2022 Apr 20;73:163-186. doi: 10.1146/annurev-physchem-082720-034254. Epub 2022 Jan 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验