Siri-Jégousse Arno, Wences Alejandro H
IIMAS, Universidad Nacional Autónoma de México, Mexico City, Mexico.
LAAS - CNRS, Université de Toulouse, Toulouse, France.
J Math Biol. 2024 Dec 17;90(1):7. doi: 10.1007/s00285-024-02173-x.
We propose a general framework for the study of the genealogy of neutral discrete-time populations. We remove the standard assumption of exchangeability of offspring distributions appearing in Cannings models, and replace it by a less restrictive condition of non-heritability of reproductive success. We provide a general criterion for the weak convergence of their genealogies to -coalescents, and apply it to a simple parametrization of our scenario (which, under mild conditions, we also prove to essentially include the general case). We provide examples for such populations, including models with highly-asymmetric offspring distributions and populations undergoing random but recurrent bottlenecks. Finally we study the limit genealogy of a new exponential model which, as previously shown for related models and in spite of its built-in (fitness) inheritance mechanism, can be brought into our setting.
我们提出了一个用于研究中性离散时间种群系谱的通用框架。我们摒弃了坎宁斯模型中出现的后代分布可交换性这一标准假设,并用繁殖成功不可遗传性这一限制较少的条件取而代之。我们给出了它们的系谱弱收敛到(\Lambda)-合并过程的一般准则,并将其应用于我们所设想情形的一个简单参数化(在温和条件下,我们还证明该情形本质上涵盖了一般情况)。我们给出了这类种群的例子,包括具有高度不对称后代分布的模型以及经历随机但反复瓶颈效应的种群。最后,我们研究了一个新的指数模型的极限系谱,正如之前针对相关模型所表明的那样,尽管该模型具有内置的(适应性)遗传机制,但仍可纳入我们的设定。