Suppr超能文献

用于罕见病的人工智能驱动的药物发现

AI-Driven Drug Discovery for Rare Diseases.

作者信息

Gangwal Amit, Lavecchia Antonio

机构信息

Department of Natural Product Chemistry, Shri Vile Parle Kelavani Mandal's Institute of Pharmacy, Dhule 424001, Maharashtra, India.

"Drug Discovery" Laboratory, Department of Pharmacy, University of Naples Federico II, I-80131 Naples, Italy.

出版信息

J Chem Inf Model. 2025 Mar 10;65(5):2214-2231. doi: 10.1021/acs.jcim.4c01966. Epub 2024 Dec 17.

Abstract

Rare diseases (RDs), affecting 300 million people globally, present a daunting public health challenge characterized by complexity, limited treatment options, and diagnostic hurdles. Despite legislative efforts, such as the 1983 US Orphan Drug Act, more than 90% of RDs lack effective therapies. Traditional drug discovery models, marked by lengthy development cycles and high failure rates, struggle to meet the unique demands of RDs, often yielding poor returns on investment. However, the advent of artificial intelligence (AI), encompassing machine learning (ML) and deep learning (DL), offers groundbreaking solutions. This review explores AI's potential to revolutionize drug discovery for RDs by overcoming these challenges. It discusses AI-driven advancements, such as drug repurposing, biomarker discovery, personalized medicine, genetics, clinical trial optimization, corporate innovations, and novel drug target identification. By synthesizing current knowledge and recent breakthroughs, this review provides crucial insights into how AI can accelerate therapeutic development for RDs, ultimately improving patient outcomes. This comprehensive analysis fills a critical gap in the literature, enhancing understanding of AI's pivotal role in transforming RD research and guiding future research and development efforts in this vital area of medicine.

摘要

罕见病影响着全球3亿人,是一项艰巨的公共卫生挑战,其特点是病情复杂、治疗选择有限且存在诊断障碍。尽管有立法举措,如1983年美国的《孤儿药法案》,但超过90%的罕见病仍缺乏有效治疗方法。传统药物研发模式以漫长的研发周期和高失败率为特征,难以满足罕见病的独特需求,往往投资回报率不佳。然而,包括机器学习(ML)和深度学习(DL)在内的人工智能(AI)的出现提供了开创性的解决方案。本综述探讨了人工智能通过克服这些挑战,为罕见病药物研发带来变革的潜力。它讨论了人工智能驱动的进展,如药物重新利用、生物标志物发现、个性化医疗、遗传学、临床试验优化、企业创新以及新型药物靶点识别。通过综合当前知识和近期突破,本综述提供了关于人工智能如何加速罕见病治疗开发、最终改善患者预后的关键见解。这一全面分析填补了文献中的关键空白,增进了对人工智能在改变罕见病研究中的关键作用的理解,并为这一重要医学领域的未来研发工作提供指导。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验