Suppr超能文献

用于变革药物发现与优化的先进人工智能和机器学习框架:具备在多药理学、药物再利用、联合疗法和纳米医学方面的创新见解。

Advanced AI and ML frameworks for transforming drug discovery and optimization: With innovative insights in polypharmacology, drug repurposing, combination therapy and nanomedicine.

作者信息

Ambreen Subiya, Umar Mohammad, Noor Aaisha, Jain Himangini, Ali Ruhi

机构信息

Department of Pharmaceutical Chemistry, Delhi Institute of Pharmaceutical Sciences and Research (DIPSAR), DPSRU, Pushp Vihar, New Delhi, 110017, India.

Department of Pharmaceutical Chemistry, Delhi Institute of Pharmaceutical Sciences and Research (DIPSAR), DPSRU, Pushp Vihar, New Delhi, 110017, India.

出版信息

Eur J Med Chem. 2025 Feb 15;284:117164. doi: 10.1016/j.ejmech.2024.117164. Epub 2024 Dec 13.

Abstract

Artificial Intelligence (AI) and Machine Learning (ML) are transforming drug discovery by overcoming traditional challenges like high costs, time-consuming, and frequent failures. AI-driven approaches streamline key phases, including target identification, lead optimization, de novo drug design, and drug repurposing. Frameworks such as deep neural networks (DNNs), convolutional neural networks (CNNs), and deep reinforcement learning (DRL) models have shown promise in identifying drug targets, optimizing delivery systems, and accelerating drug repurposing. Generative adversarial networks (GANs) and variational autoencoders (VAEs) aid de novo drug design by creating novel drug-like compounds with desired properties. Case studies, such as DDR1 kinase inhibitors designed using generative models and CDK20 inhibitors developed via structure-based methods, highlight AI's ability to produce highly specific therapeutics. Models like SNF-CVAE and DeepDR further advance drug repurposing by uncovering new therapeutic applications for existing drugs. Advanced ML algorithms enhance precision in predicting drug efficacy, toxicity, and ADME-Tox properties, reducing development costs and improving drug-target interactions. AI also supports polypharmacology by optimizing multi-target drug interactions and enhances combination therapy through predictions of drug synergies and antagonisms. In nanomedicine, AI models like CURATE.AI and the Hartung algorithm optimize personalized treatments by predicting toxicological risks and real-time dosing adjustments with high accuracy. Despite its potential, challenges like data quality, model interpretability, and ethical concerns must be addressed. High-quality datasets, transparent models, and unbiased algorithms are essential for reliable AI applications. As AI continues to evolve, it is poised to revolutionize drug discovery and personalized medicine, advancing therapeutic development and patient care.

摘要

人工智能(AI)和机器学习(ML)正在通过克服高成本、耗时和频繁失败等传统挑战来改变药物发现。人工智能驱动的方法简化了关键阶段,包括靶点识别、先导优化、从头药物设计和药物再利用。深度神经网络(DNN)、卷积神经网络(CNN)和深度强化学习(DRL)模型等框架在识别药物靶点、优化给药系统和加速药物再利用方面已显示出前景。生成对抗网络(GAN)和变分自编码器(VAE)通过创建具有所需特性的新型类药物化合物来辅助从头药物设计。案例研究,如使用生成模型设计的DDR1激酶抑制剂和通过基于结构的方法开发的CDK20抑制剂,突出了人工智能生产高度特异性疗法的能力。SNF-CVAE和DeepDR等模型通过揭示现有药物的新治疗应用进一步推进药物再利用。先进的机器学习算法提高了预测药物疗效、毒性和ADME-Tox特性的精度,降低了开发成本并改善了药物-靶点相互作用。人工智能还通过优化多靶点药物相互作用来支持多药理学,并通过预测药物协同作用和拮抗作用来增强联合治疗。在纳米医学中,CURATE.AI和Hartung算法等人工智能模型通过高精度预测毒理学风险和实时剂量调整来优化个性化治疗。尽管具有潜力,但数据质量、模型可解释性和伦理问题等挑战必须得到解决。高质量的数据集、透明的模型和无偏见的算法对于可靠的人工智能应用至关重要。随着人工智能的不断发展,它有望彻底改变药物发现和个性化医疗,推动治疗开发和患者护理。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验